The relationship between transforming growth factor β superfamily members (GDF11 and BMP4) and lumbar spine bone mineral density in postmenopausal Chinese women.
Lumbar bone mineral density
Postmenopausal women
Serum BMP4 levels
Serum GDF11 levels
Journal
Archives of gynecology and obstetrics
ISSN: 1432-0711
Titre abrégé: Arch Gynecol Obstet
Pays: Germany
ID NLM: 8710213
Informations de publication
Date de publication:
03 2022
03 2022
Historique:
received:
27
05
2020
accepted:
14
08
2021
pubmed:
22
8
2021
medline:
16
3
2022
entrez:
21
8
2021
Statut:
ppublish
Résumé
The relationship between transforming growth factor β superfamily members (GDF11 and BMP4) and bone metabolism remains controversial. The aim of this study was to investigate the association between serum GDF11 and BMP4 levels and lumbar spine bone mineral density (LBMD) in a cohort of postmenopausal Chinese women. This was a non-prospective cross-sectional study of 350 postmenopausal women with a mean age of 63.13 ± 8.66 years who came from Shenyang, China. LBMD was measured using dual-energy X-ray absorptiometry. Serum GDF11 and BMP4 concentrations were detected using a sandwich enzyme immunoassay kit. Pearson's correlation analysis and regression analyses were carried out to investigate the relationships between LBMD and serum GDF11 and BMP4 levels. A linear association between LBMD and serum LgGDF11 concentration was observed after adjusting for numerous confounders (P = 0.018). In addition, the osteoporosis (OP) was inversely related to LgGDF11 and the odds ratios for postmenopausal women with lumbar OP in LgGDF11 quartile group 2, group 3, and group 4 were 0.46 (95% CI 0.23-0.90, P < 0.05), 0.41 (95% CI 0.20-0.84, P < 0.05), and 0.30 (95% CI 0.14-0.63, P < 0.01), respectively (P = 0.001 for the trend), when compared to the highest quartile of LgGDF11 after adjustments for many confounding variables in this study. This study showed that serum GDF11 levels were linearly related to LBMD, and it was also revealed that serum GDF11 levels were significantly associated with lumbar OP in postmenopausal women. However, serum BMP4 levels were not associated with LBMD and lumbar OP.
Identifiants
pubmed: 34417839
doi: 10.1007/s00404-021-06183-8
pii: 10.1007/s00404-021-06183-8
doi:
Substances chimiques
BMP4 protein, human
0
Bone Morphogenetic Protein 4
0
Bone Morphogenetic Proteins
0
GDF11 protein, human
0
Growth Differentiation Factors
0
Transforming Growth Factor beta
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
737-747Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson A, Kampf C, Sjostedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Ponten F (2015) Proteomics. Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419
doi: 10.1126/science.1260419
pubmed: 25613900
Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, Sinha M, Dall’Osso C, Khong D, Shadrach JL, Miller CM, Singer BS, Stewart A, Psychogios N, Gerszten RE, Hartigan AJ, Kim MJ, Serwold T, Wagers AJ, Lee RT (2013) Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153(4):828–839. https://doi.org/10.1016/j.cell.2013.04.015
doi: 10.1016/j.cell.2013.04.015
pubmed: 23663781
pmcid: 3677132
Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, Chen JW, Lee RT, Wagers AJ, Rubin LL (2014) Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344(6184):630–634. https://doi.org/10.1126/science.1251141
doi: 10.1126/science.1251141
pubmed: 24797482
pmcid: 4123747
Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, Miller C, Regalado SG, Loffredo FS, Pancoast JR, Hirshman MF, Lebowitz J, Shadrach JL, Cerletti M, Kim MJ, Serwold T, Goodyear LJ, Rosner B, Lee RT, Wagers AJ (2014) Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344(6184):649–652. https://doi.org/10.1126/science.1251152
doi: 10.1126/science.1251152
pubmed: 24797481
pmcid: 4104429
Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, Mallozzi C, Jacobi C, Jennings LL, Clay I, Laurent G, Ma S, Brachat S, Lach-Trifilieff E, Shavlakadze T, Trendelenburg AU, Brack AS, Glass DJ (2015) GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab 22(1):164–174. https://doi.org/10.1016/j.cmet.2015.05.010
doi: 10.1016/j.cmet.2015.05.010
pubmed: 26001423
pmcid: 4497834
Oh SP, Yeo CY, Lee Y, Schrewe H, Whitman M, Li E (2002) Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes Dev 16(21):2749–2754. https://doi.org/10.1101/gad.1021802
doi: 10.1101/gad.1021802
pubmed: 12414726
pmcid: 187472
Li Z, Kawasumi M, Zhao B, Moisyadi S, Yang J (2010) Transgenic over-expression of growth differentiation factor 11 propeptide in skeleton results in transformation of the seventh cervical vertebra into a thoracic vertebra. Mol Reprod Dev 77(11):990–997. https://doi.org/10.1002/mrd.21252
doi: 10.1002/mrd.21252
pubmed: 21049546
pmcid: 3099245
Li Z, Zeng F, Mitchell AD, Kim YS, Wu Z, Yang J (2011) Transgenic overexpression of bone morphogenetic protein 11 propeptide in skeleton enhances bone formation. Biochem Biophys Res Commun 416(3–4):289–292. https://doi.org/10.1016/j.bbrc.2011.11.019
doi: 10.1016/j.bbrc.2011.11.019
pubmed: 22093826
pmcid: 3252393
Zhang Y, Shao J, Wang Z, Yang T, Liu S, Liu Y, Fan X, Ye W (2015) Growth differentiation factor 11 is a protective factor for osteoblastogenesis by targeting PPARgamma. Gene 557(2):209–214. https://doi.org/10.1016/j.gene.2014.12.039
doi: 10.1016/j.gene.2014.12.039
pubmed: 25534870
Lu Q, Tu ML, Li CJ, Zhang L, Jiang TJ, Liu T, Luo XH (2016) GDF11 inhibits bone formation by activating Smad2/3 in bone marrow mesenchymal stem cells. Calcif Tissue Int 99(5):500–509. https://doi.org/10.1007/s00223-016-0173-z
doi: 10.1007/s00223-016-0173-z
pubmed: 27395058
Cole AE, Murray SS, Xiao J (2016) Bone morphogenetic protein 4 signalling in neural stem and progenitor cells during development and after injury. Stem Cells Int 2016:9260592. https://doi.org/10.1155/2016/9260592
doi: 10.1155/2016/9260592
pubmed: 27293450
pmcid: 4884839
Lim J, Tu X, Choi K, Akiyama H, Mishina Y, Long F (2015) BMP–Smad4 signaling is required for precartilaginous mesenchymal condensation independent of Sox9 in the mouse. Dev Biol 400(1):132–138
doi: 10.1016/j.ydbio.2015.01.022
Junjun J, Yinshi R, Zhaowen Z, Chuanju L, Nobuhiro K, Yuji M, Ying L, Xuedong Z, Feng JQ (2013) BMP receptor 1A determines the cell fate of the postnatal growth plate. Int J Biol Sci 9(9):895
doi: 10.7150/ijbs.7508
Akira K, Takanobu O, Gen K, Naohiro Y, Rie M-N, Jun M, Osamu K, Haruhiko T (2014) Resveratrol inhibits BMP-4-stimulated VEGF synthesis in osteoblasts: suppression of S6 kinase. Int J Mol Med 33(4):1013–1018
doi: 10.3892/ijmm.2014.1626
Andersson O, Reissmann E, Ibánez CF (2006) Growth differentiation factor 11 signals through the transforming growth factor-β receptor ALK5 to regionalize the anterior–posterior axis. Embo Rep 7:831–837
doi: 10.1038/sj.embor.7400752
Miao Y, Hao W, Zhuangzhuang F, Chencheng X, Haochen L, Yang L, Dong H, Sing-Wai W, Hailan F (2019) BMP4 mutations in tooth agenesis and low bone mass. Arch Oral Biol 103:40–46
doi: 10.1016/j.archoralbio.2019.05.012
Babu LR, Wilson SG, Dick IM, Islam FMA, Devine A, Prince RL (2004) Bone mass effects of a BMP4 gene polymorphism in postmenopausal women. Bone 36(3):555–561
doi: 10.1016/j.bone.2004.12.005
Ozkan ZS, Deveci D, Etem EO, Yüce H (2010) Lack of effect of bone morphogenetic protein 2 and 4 gene polymorphisms on bone density in postmenopausal Turkish women. Genet Mol Res 9(4):2311–2316
doi: 10.4238/vol9-4gmr922
Cui LH, Choi JS, Shin MH, Kweon SS, Park KS, Lee YH, Nam HS, Jeong SK, Im JS (2008) Prevalence of osteoporosis and reference data for lumbar spine and hip bone mineral density in a Korean population. J Bone Miner Metab 26(6):609–617. https://doi.org/10.1007/s00774-007-0847-8
doi: 10.1007/s00774-007-0847-8
pubmed: 18979161
Cui L, Chen L, Xia W, Jiang Y, Cui L, Huang W, Wang W, Wang X, Pei Y, Zheng X, Wang Q, Ning Z, Li M, Wang O, Xing X, Lin Q, Yu W, Weng X, Xu L, Cummings SR (2017) Vertebral fracture in postmenopausal Chinese women: a population-based study. Osteoporos Int 28(9):2583–2590. https://doi.org/10.1007/s00198-017-4085-1
doi: 10.1007/s00198-017-4085-1
pubmed: 28560474
Han W, Bai X, Wang N, Han L, Sun X, Chen X (2017) Association between lumbar bone mineral density and serum uric acid in postmenopausal women: a cross-sectional study of healthy Chinese population. Arch Osteoporos 12(1):50. https://doi.org/10.1007/s11657-017-0345-0
doi: 10.1007/s11657-017-0345-0
pubmed: 28527105
Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612
doi: 10.7326/0003-4819-150-9-200905050-00006
Wang N, Bai X, Jin B, Han W, Sun X, Chen X (2016) The association of serum cathepsin B concentration with age-related cardiovascular-renal subclinical state in a healthy Chinese population. Arch Gerontol Geriatr 65:146–155. https://doi.org/10.1016/j.archger.2016.03.015
doi: 10.1016/j.archger.2016.03.015
pubmed: 27032082
Chen Y, Guo Q, Zhang M, Song S, Quan T, Zhao T, Li H, Guo L, Jiang T, Wang G (2016) Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women. Bone Res 4:16012. https://doi.org/10.1038/boneres.2016.12
doi: 10.1038/boneres.2016.12
pubmed: 27408764
pmcid: 4923943
Jin M, Song S, Guo L, Jiang T, Lin ZY (2016) Increased serum GDF11 concentration is associated with a high prevalence of osteoporosis in elderly native Chinese women. Clin Exp Pharmacol Physiol 43(11):1145–1147. https://doi.org/10.1111/1440-1681.12651
doi: 10.1111/1440-1681.12651
pubmed: 27557752
Yali W, Jian Q, Huabing L, Haiyan Y, Qi G, Zhanbo O, Qiong L (2018) Relationship between serum level of GDF8, GDF11 and bone mineral density in girls with anorexia nervosa. Clin Endocrinol 90:88–93
Hamrick MW, Shi X, Zhang W, Pennington C, Thakore H, Haque M, Kang B, Isales CM, Fulzele S, Wenger KH (2007) Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading. Bone 40(6):1544–1553. https://doi.org/10.1016/j.bone.2007.02.012
doi: 10.1016/j.bone.2007.02.012
pubmed: 17383950
pmcid: 2001954
Hamrick MW, Arounleut P, Kellum E, Cain M, Immel D, Liang LF (2010) Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury. J Trauma 69(3):579–583. https://doi.org/10.1097/TA.0b013e3181c451f4
doi: 10.1097/TA.0b013e3181c451f4
pubmed: 20173658
pmcid: 3738012
McPherron AC (2010) Metabolic functions of myostatin and GDF11. Immunol Endocr Metab Agents Med Chem 10(4):217–231. https://doi.org/10.2174/187152210793663810
doi: 10.2174/187152210793663810
pubmed: 21197386
pmcid: 3011861
Lach-Trifilieff E, Minetti GC, Sheppard K, Ibebunjo C, Feige JN, Hartmann S, Brachat S, Rivet H, Koelbing C, Morvan F, Hatakeyama S, Glass DJ (2014) An antibody blocking activin type II receptors induces strong skeletal muscle hypertrophy and protects from atrophy. Mol Cell Biol 34(4):606–618. https://doi.org/10.1128/mcb.01307-13
doi: 10.1128/mcb.01307-13
pubmed: 24298022
pmcid: 3911487
Si C, Lingfei J, Shan Z, Yunfei Z, Yongsheng Z (2018) DEPTOR regulates osteogenic differentiation via inhibiting MEG3-mediated activation of BMP4 signaling and is involved in osteoporosis. Stem Cell Res Ther 9(1):1–14
doi: 10.1186/s13287-017-0735-7
Wen-Yan J, Chun X, Hong-Wei W, Wei W, Su-Zhen C, Liu-Fang N, Xu X, Qi-Qun T, Hai-Yan H (2018) A Lox/CHOP-10 crosstalk governs osteogenic and adipogenic cell fate by MSCs. J Cell Mol Med 22(10):5097–5108
doi: 10.1111/jcmm.13798
Francesca D, Marco DA, Agnese G, Ilaria M, Valeria E, Alessia B, Adriano P, Valentina G, Emanuela M, Antonella F, Oriana T (2018) A novel role in skeletal segment regeneration of extracellular vesicles released from periodontal-ligament stem cells. Int J Nanomed 13:3805
doi: 10.2147/IJN.S162836
Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor-like signaling pathway to block adipogenesis. Mol Cell Biol 23(20):7230–7242
doi: 10.1128/MCB.23.20.7230-7242.2003
Looker AC, Melton LJ 3rd, Borrud LG, Shepherd JA (2012) Lumbar spine bone mineral density in US adults: demographic patterns and relationship with femur neck skeletal status. Osteoporos Int 23(4):1351–1360. https://doi.org/10.1007/s00198-011-1693-z
doi: 10.1007/s00198-011-1693-z
pubmed: 21720893