Human orbital muscle in adult cadavers and near-term fetuses: its bony attachments and individual variation identified by immunohistochemistry.
Adult cadaver
Human fetus
Inferior orbital fissure
Orbital muscle
Smooth muscle
Journal
Surgical and radiologic anatomy : SRA
ISSN: 1279-8517
Titre abrégé: Surg Radiol Anat
Pays: Germany
ID NLM: 8608029
Informations de publication
Date de publication:
Nov 2021
Nov 2021
Historique:
received:
22
02
2021
accepted:
16
08
2021
pubmed:
22
8
2021
medline:
15
12
2021
entrez:
21
8
2021
Statut:
ppublish
Résumé
To compare fetal and adult morphologies of the orbital muscle (OM) and to describe the detailed topographical anatomy in adults. Using unilateral orbits from 15 near-term fetuses and 21 elderly cadavers, semiserial horizontal or sagittal paraffin sections were prepared at intervals of 20-100 µm. In addition to routine histology, we performed immunohistochemistry for smooth muscle actin. At near term, the OM consistently extended widely from the zygomatic bone or the greater wing of the sphenoid to the maxilla or ethmoid. Thus, it was a large sheet covering the future inferior orbital fissure. In contrast, the adult OM was a thin and small muscle bundle connecting (1) the greater wing of the sphenoid to the maxilla (11/19 cadavers), (2) the lesser wing of the sphenoid to the maxilla (5/19) or the greater wing (3/19). The small OM was likely to be restricted within the greater wing (5/19 cadavers) or the maxilla (3/19). Two of these five types of OM coexisted in eight orbits. OM attachment to the lesser wing was not seen in fetuses, whereas ethmoid attachment was absent in adults. The lesser wing attachment of the OM seemed to establish after birth. A growing common origin of the three recti was likely involved in "stealing" the near-term OM attachment from the ethmoid. The strong immunoreactivity of remnant-like OM in the elderly suggests that OM contraction is still likely to occur against the increased flow through a thin vein. However, the contraction might have no clinical significance.
Identifiants
pubmed: 34417852
doi: 10.1007/s00276-021-02819-1
pii: 10.1007/s00276-021-02819-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1813-1821Subventions
Organisme : Wonkwang University
ID : 2020
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature.
Références
Bergen MP (1982) Some histological aspects of the structure of the connective tissue system and its relationships with the blood vessels in the human orbit. Acta Morphol Neerl Scand 20:293–308
pubmed: 7158442
Clark RA, Demer JL (2018) Magnetic resonance imaging of the globe-tendon interface for extraocular muscle: is there an Arc of contact? Am J Ophthalmol 194:171–181
doi: 10.1016/j.ajo.2018.07.002
De Battista JC, Zimmer LA, Rodríguez-Vázquez JF et al (2011) Muller’s muscle, no longer vestigial in endoscopic surgery. World Neurosurg 76:342–346
doi: 10.1016/j.wneu.2010.12.057
de Haan AB, Willekens B, Klooster J et al (2006) The prenatal development of the human orbit. Strabismus 14:51–56
doi: 10.1080/09273970600579788
Demer JL, Miller JM, Poukens V et al (1995) Evidence for fibromuscular pulleys of the recti extraocular muscles. Invest Ophthalmol Vis Sci 36:1125–1136
pubmed: 7730022
Dutton JJ (2011) Atlas of clinical and surgical orbital anatomy. PA, WB Saunders
Hinata N, Murakami G (2014) The urethral rhabdosphincter, levator ani muscle and perineal membrane: a review. BioMedical Res Int. https://doi.org/10.1155/2014/906921
doi: 10.1155/2014/906921
Honkura Y, Yamamoto M, Rodríguez-Vázquez JF et al (2021) Fetal development of the carotid canal with special reference to a contribution of the sphenoid bone and pharyngotympanic tube. Anat Cell Biol54(2):259-269
Jin ZW, Abe H, Jin Y, Shibata S et al (2016) Positional changes in tendon insertions from a bone to fascia: human fetal development of the pes anserinus and the semimembranosus muscle insertion. Folia Morphol 75:503–511
doi: 10.5603/FM.a2016.0020
Jordan DR (1992) The orbital muscle of Muller. Arch Ophthalmol 110:1798–1799
doi: 10.1001/archopht.1992.01080240138047
Kim JH, Hayashi S, Yamamoto M et al (2020) Examination of the tendinous annulus of Zinn for a common origin of the extraocular recti 2. An embryological basis of extraocular muscle anomalies. Investig Ophthal Vis Sci 61(12):5
doi: 10.1167/iovs.61.12.5
Kono R, Poukens V, Demer JL (2002) Quantitative analysis of the structure of the human extraocular muscle pulley system. Invest Ophthalmol Vis Sci 43:2923–2932
pubmed: 12202511
Koornneef L (1988) Eyelid and orbital fascial attachments and their clinical significance. Eye 2:130–134
doi: 10.1038/eye.1988.26
Last RJ (1970) Eugene Wolff’s anatomy of the eye and orbit. PA, WB Saunders
Meshida K, Lin S, Domning DP et al (2020) Cetacean orbital muscles: anatomy and function of the circular layers. Anat Rec 303:1792–1811
doi: 10.1002/ar.24278
Miyake N, Hayashi S, Kawase T et al (2010) Fetal anatomy of the human carotid sheath and structures in and around it. Anat Rec 293:438–445
doi: 10.1002/ar.21089
Naito T, Cho KH, Yamamoto M et al (2019) Examination of the topographical anatomy and fetal development of the tendinous annulus of Zinn for a common origin of the extraocular recti. Invest Ophthal Vis Sci 60:4564–4573
doi: 10.1167/iovs.19-28094
Naito M, Suzuki R, Abe H et al (2015) Fetal development of the human obturator internus muscle with special reference to the tendon and pulley. Anat Rec 298(7):1282–1293
doi: 10.1002/ar.23121
Ngnitewe Massa R, Minutello K, Mesfin FB (2020) StatPearls [Internet] neuroanatomy. StatPearls Publishing Cavernous Sinus
Osanai H, Abe S, Rodríguez-Vázquez JF et al (2011) Human orbital muscle: a new point of view from the fetal development of extraocular connective tissue. Investig Ophthalmol Vis Sci 52:1501–1506
doi: 10.1167/iovs.10-6013
Rodríguez-Vázquez JF, Mérida-Velasco JR, Arráez-Aybar LA et al (1998) Anatomic relationships of the orbital muscle of Müller in human fetuses. Surg Radiol Anat 20:341–344
doi: 10.1007/BF01630617
Rodríguez-Vázquez JF, Mérida-Velasco JR, Jiménez-Collado J (1990) Orbital muscle of Müller: observations on human fetuses measuring 35–150 mm. Acta Anat 139:300–303
doi: 10.1159/000147014
Sasaki H, Hinata N, Kurokawa K et al (2014) Supportive tissues of the vagina with special reference to a fibrous skeleton in the perineum: a review. Open J Obstet Gynecol 4:144–157
doi: 10.4236/ojog.2014.43025
Smith TJ, Hegedus L (2016) Grave’s disease. N Engl J Med 375:1552
doi: 10.1056/NEJMra1510030
Tawfik HA, Dutton JJ (2018) Embryologic and fetal development of the human orbit. Ophthalmic Plast Reconstr Surg 34:405–421
doi: 10.1097/IOP.0000000000001172
Toerien MJ, Gous AEF (1978) The orbital muscle of Müller. S Afr Med J 53:139–141
pubmed: 653491
Wang Y, Smith TJ (2014) Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Investig Ophthalmol Vis Sci 55:1735–1748
doi: 10.1167/iovs.14-14002
Warwick R (1976) Eugene Wolff’s anatomy of the eye and orbit, 7th edn. Saunders
Williams PL (1995) Gray’s Anatomy, 38th ed. Churchill Livingstone, p 1353
Xu L, Li L, Xie C et al (2017) Thickness of extraocular muscle and orbital fat in MRI predicts response to glucocorticoid therapy in Graves’ ophthalmopathy. Int J Endocrinol. https://doi.org/10.1155/2017/3196059
doi: 10.1155/2017/3196059
pubmed: 29358950
pmcid: 5735665
Yamamoto M, Takada H, Ishizuka S et al (2020) Morphological association between the muscles and bones in the craniofacial region. PLoS ONE 15(1):e0227301
doi: 10.1371/journal.pone.0227301
Yang JD, Ishikawa K, Hwang HP et al (2013) Morphology of the ligament of Treitz likely depends on its fetal topographical relationship with the left adrenal and liver caudate lobe as well as developing lymphatic tissues: a histological study using human fetuses. Surg Radiol Anat 35:25–38
doi: 10.1007/s00276-012-0996-x