UDSNB 3.0 Neuropsychological Test Norms in Older Adults from a Diverse Community: Results from the Einstein Aging Study (EAS).
Aging
cognitive test norms
community sample
mild cognitive impairment
neuropsychology
racial/ethnic diversity
Journal
Journal of Alzheimer's disease : JAD
ISSN: 1875-8908
Titre abrégé: J Alzheimers Dis
Pays: Netherlands
ID NLM: 9814863
Informations de publication
Date de publication:
2021
2021
Historique:
pubmed:
24
8
2021
medline:
17
12
2021
entrez:
23
8
2021
Statut:
ppublish
Résumé
The Uniform Data Set, Version 3 Neuropsychological Battery (UDSNB3.0), from the database of the University of Washington's National Alzheimer's Coordinating Center (NACC), is widely used to characterize cognitive performance in clinical and research settings; however, norms for underrepresented community-based samples are scarce. We compared UDSNB 3.0 test scores between the Einstein Aging Study (EAS), composed of racially/ethnically diverse, community-dwelling older adults aged≥70 and the NACC, and report normative data from the EAS. Analyses included 225 cognitively normal EAS participants and comparable data from 5,031 NACC database participants. Linear regression models compared performance between the samples, adjusting for demographics (sex, age, education, race/ethnicity), depressive symptoms, and whether English was the first language. Linear regression models to examine demographic factors including age, sex, education and race/ethnicity as predictors for the neuropsychological tests were applied in EAS and NACC separately and were used to create a demographically adjusted z-score calculator. Cognitive performance across all domains was worse in the EAS than in the NACC, adjusting for age, sex, education, race/ethnicity, and depression, and the differences remained in visuo-construction, visuospatial memory, confrontation naming, visual attention/processing speed, and executive functioning after further adjusting for whether English was the first language. In both samples, non-Hispanic Whites outperformed non-Hispanic Blacks and more education was associated with better cognitive performance. Differences observed in demographic, clinical, and cognitive characteristics between the community-based EAS sample and the nationwide NACC sample suggest that separate normative data that more accurately reflect non-clinic, community-based populations should be established.
Sections du résumé
BACKGROUND
The Uniform Data Set, Version 3 Neuropsychological Battery (UDSNB3.0), from the database of the University of Washington's National Alzheimer's Coordinating Center (NACC), is widely used to characterize cognitive performance in clinical and research settings; however, norms for underrepresented community-based samples are scarce.
OBJECTIVE
We compared UDSNB 3.0 test scores between the Einstein Aging Study (EAS), composed of racially/ethnically diverse, community-dwelling older adults aged≥70 and the NACC, and report normative data from the EAS.
METHODS
Analyses included 225 cognitively normal EAS participants and comparable data from 5,031 NACC database participants. Linear regression models compared performance between the samples, adjusting for demographics (sex, age, education, race/ethnicity), depressive symptoms, and whether English was the first language. Linear regression models to examine demographic factors including age, sex, education and race/ethnicity as predictors for the neuropsychological tests were applied in EAS and NACC separately and were used to create a demographically adjusted z-score calculator.
RESULTS
Cognitive performance across all domains was worse in the EAS than in the NACC, adjusting for age, sex, education, race/ethnicity, and depression, and the differences remained in visuo-construction, visuospatial memory, confrontation naming, visual attention/processing speed, and executive functioning after further adjusting for whether English was the first language. In both samples, non-Hispanic Whites outperformed non-Hispanic Blacks and more education was associated with better cognitive performance.
CONCLUSION
Differences observed in demographic, clinical, and cognitive characteristics between the community-based EAS sample and the nationwide NACC sample suggest that separate normative data that more accurately reflect non-clinic, community-based populations should be established.
Identifiants
pubmed: 34420967
pii: JAD210538
doi: 10.3233/JAD-210538
pmc: PMC8805183
mid: NIHMS1771862
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1665-1678Subventions
Organisme : NIA NIH HHS
ID : R21 AG056920
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005142
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG013846
Pays : United States
Organisme : NINDS NIH HHS
ID : U10 NS077308
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG016573
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG047266
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010161
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG025688
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005133
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005138
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG047366
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG019610
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG028383
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG033514
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG013854
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG053760
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG066444
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010124
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG023501
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005131
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010133
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG016574
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005146
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG035982
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG008702
Pays : United States
Organisme : NIA NIH HHS
ID : U01 AG016976
Pays : United States
Organisme : NIA NIH HHS
ID : R01 AG042595
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG008051
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005681
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005136
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG049638
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG012300
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG005134
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG008017
Pays : United States
Organisme : NIA NIH HHS
ID : P50 AG047270
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS082432
Pays : United States
Organisme : NIA NIH HHS
ID : P01 AG003949
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG010129
Pays : United States
Références
Clin Neuropsychol. 2021 Apr;35(3):541-571
pubmed: 31996089
Nihon Koshu Eisei Zasshi. 1999 Jul;46(7):551-62
pubmed: 10550979
Arch Clin Neuropsychol. 2021 Feb 12;36(2):165-176
pubmed: 31647516
Arch Clin Neuropsychol. 2012 Nov;27(7):749-55
pubmed: 22985952
Neuropsychologia. 2011 Jan;49(1):43-8
pubmed: 21029744
J Clin Exp Neuropsychol. 2011 Apr;33(4):448-55
pubmed: 21154078
Int Psychogeriatr. 1997;9 Suppl 1:173-6; discussion 177-8
pubmed: 9447441
Clin Neuropsychol. 2009 Jul;23(5):761-79
pubmed: 19530035
J Int Neuropsychol Soc. 2013 Mar;19(3):272-83
pubmed: 23298442
Alzheimer Dis Assoc Disord. 2012 Oct-Dec;26(4):335-43
pubmed: 22156756
Alzheimers Dement (Amst). 2021 Feb 05;13(1):e12144
pubmed: 33598528
Int Psychogeriatr. 2009 Dec;21(6):1051-62
pubmed: 19586563
Clin Neuropsychol. 2006 Jun;20(2):243-60
pubmed: 16690545
Neuropsychology. 2019 Nov;33(8):1089-1100
pubmed: 31343234
BMJ Open. 2012 Dec 14;2(6):
pubmed: 23242479
Arch Clin Neuropsychol. 2007 Mar;22(3):355-65
pubmed: 17320344
J Clin Exp Neuropsychol. 2003 Dec;25(8):1065-9
pubmed: 14566580
J Int Neuropsychol Soc. 2015 May;21(5):378-91
pubmed: 26030001
J Int Neuropsychol Soc. 2002 Mar;8(3):341-8
pubmed: 11939693
Neuropsychol Rev. 2009 Jun;19(2):250-62
pubmed: 19294515
Aging Ment Health. 2010 Jan;14(1):100-7
pubmed: 20155526
Alzheimer Dis Assoc Disord. 2007 Jul-Sep;21(3):249-58
pubmed: 17804958
J Int Neuropsychol Soc. 2019 May;25(5):530-545
pubmed: 31122309
Ethn Dis. 2020 Nov 19;30(Suppl 2):705-708
pubmed: 33250617
Alzheimer Dis Assoc Disord. 2020 Jul-Sep;34(3):191-197
pubmed: 32483017
Neurobiol Aging. 1996 Jan-Feb;17(1):123-30
pubmed: 8786794
Clin Neuropsychol. 2005 Jun;19(2):243-69
pubmed: 16019707
J Am Geriatr Soc. 2005 Apr;53(4):695-9
pubmed: 15817019
J Am Geriatr Soc. 2016 May;64(5):959-64
pubmed: 27225354
Clin Neuropsychol. 2003 Aug;17(3):351-66
pubmed: 14704885
Alzheimer Dis Assoc Disord. 2018 Jan-Mar;32(1):10-17
pubmed: 29240561
Alzheimers Dement (Amst). 2018 Nov 03;10:773-781
pubmed: 30505927
Alzheimer Dis Assoc Disord. 2009 Apr-Jun;23(2):91-101
pubmed: 19474567
Res Aging. 2007 Jan 1;29(1):73-94
pubmed: 19830260
Alzheimer Dis Assoc Disord. 2006 Oct-Dec;20(4):210-6
pubmed: 17132964
J Aging Health. 2019 Oct;31(9):1589-1615
pubmed: 29969933
Psychol Assess. 2016 Jan;28(1):18-38
pubmed: 26146950
Arch Clin Neuropsychol. 2019 Jan 24;35(1):75-89
pubmed: 31236576
J Clin Epidemiol. 1996 Jan;49(1):79-83
pubmed: 8598515
J Aging Health. 2016 Feb;28(1):40-67
pubmed: 26006338
Appl Neuropsychol Adult. 2021 Mar 11;:1-7
pubmed: 33691536
J Clin Oncol. 1985 Aug;3(8):1142-7
pubmed: 4020412
Psychol Aging. 2016 Mar;31(2):166-75
pubmed: 26796792
Int J Geriatr Psychiatry. 2016 Sep;31(9):1004-12
pubmed: 26766788
Arch Clin Neuropsychol. 2007 Mar;22(3):319-25
pubmed: 17350797
Appl Neuropsychol. 2006;13(2):91-100
pubmed: 17009882
Clin Neuropsychol. 2005 Jun;19(2):270-5
pubmed: 16019708