AVERAGE TREATMENT EFFECTS IN THE PRESENCE OF UNKNOWN INTERFERENCE.

62K99 Primary 62G20 SUTVA causal effects causal inference experiments secondary 62D99

Journal

Annals of statistics
ISSN: 0090-5364
Titre abrégé: Ann Stat
Pays: United States
ID NLM: 0365252

Informations de publication

Date de publication:
Apr 2021
Historique:
entrez: 23 8 2021
pubmed: 24 8 2021
medline: 24 8 2021
Statut: ppublish

Résumé

We investigate large-sample properties of treatment effect estimators under unknown interference in randomized experiments. The inferential target is a generalization of the average treatment effect estimand that marginalizes over potential spillover effects. We show that estimators commonly used to estimate treatment effects under no interference are consistent for the generalized estimand for several common experimental designs under limited but otherwise arbitrary and unknown interference. The rates of convergence depend on the rate at which the amount of interference grows and the degree to which it aligns with dependencies in treatment assignment. Importantly for practitioners, the results imply that if one erroneously assumes that units do not interfere in a setting with limited, or even moderate, interference, standard estimators are nevertheless likely to be close to an average treatment effect if the sample is sufficiently large. Conventional confidence statements may, however, not be accurate.

Identifiants

pubmed: 34421150
doi: 10.1214/20-aos1973
pmc: PMC8372033
mid: NIHMS1683738
doi:

Types de publication

Journal Article

Langues

eng

Pagination

673-701

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI085073
Pays : United States

Références

Epidemiology. 1995 Mar;6(2):142-51
pubmed: 7742400
Stat Probab Lett. 2011 Jul 1;81(7):861-869
pubmed: 21532912
J Am Stat Assoc. 2008 Jun;103(482):832-842
pubmed: 19081744
Biometrika. 2016 Dec;103(4):829-842
pubmed: 29422692
Curr Epidemiol Rep. 2016 Dec;3(4):297-305
pubmed: 28133589
J Am Stat Assoc. 2014 Jan 1;109(505):288-301
pubmed: 24659836
Stat Methods Med Res. 2012 Feb;21(1):55-75
pubmed: 21068053
J Epidemiol Community Health. 2006 Jul;60(7):578-86
pubmed: 16790829
J Am Stat Assoc. 2012;107(498):530-541
pubmed: 26504255
Stat Probab Lett. 2015 Oct 1;105:130-135
pubmed: 26190877
Proc Natl Acad Sci U S A. 1956 Jan;42(1):43-7
pubmed: 16589813

Auteurs

Fredrik Sävje (F)

Yale University.

Peter Aronow (P)

Yale University.

Michael Hudgens (M)

University of North Carolina, Chapel Hill.

Classifications MeSH