Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
24 Aug 2021
Historique:
received: 18 12 2020
accepted: 22 07 2021
entrez: 25 8 2021
pubmed: 26 8 2021
medline: 26 8 2021
Statut: epublish

Résumé

Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.

Identifiants

pubmed: 34429414
doi: 10.1038/s41467-021-25347-3
pii: 10.1038/s41467-021-25347-3
pmc: PMC8384879
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5088

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2021. The Author(s).

Références

Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).
pubmed: 23552945 doi: 10.1038/nature11934
De Jong, S. et al. Speed limit of the insulator–metal transition in magnetite. Nat. Mater. 12, 882–886 (2013).
pubmed: 23892787 doi: 10.1038/nmat3718
Polesya, S., Mankovsky, S., Ködderitzsch, D., Minár, J. & Ebert, H. Finite-temperature magnetism of ferh compounds. Phys. Rev. B 93, 024423 (2016).
doi: 10.1103/PhysRevB.93.024423
Wollmann, L., Nayak, A. K., Parkin, S. S. & Felser, C. Heusler 4.0: tunable materials. Annu. Rev. Mater. Res. 47, 247–270 (2017).
doi: 10.1146/annurev-matsci-070616-123928
Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).
pubmed: 21389987 doi: 10.1038/nature09829
Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
pubmed: 21233381 doi: 10.1126/science.1197294
Singer, A. et al. Photoinduced enhancement of the charge density wave amplitude. Phys. Rev. Lett. 117, 056401 (2016).
pubmed: 27517781 doi: 10.1103/PhysRevLett.117.056401
Wegkamp, D. et al. Instantaneous band gap collapse in photoexcited monoclinic vo
pubmed: 25479507 doi: 10.1103/PhysRevLett.113.216401
Shao, Z., Cao, X., Luo, H. & Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 10, 581–605 (2018).
doi: 10.1038/s41427-018-0061-2
Perfetti, L. et al. Time evolution of the electronic structure of 1t − tas
pubmed: 17026203 doi: 10.1103/PhysRevLett.97.067402
Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).
pubmed: 24723607 doi: 10.1126/science.1241591
Ono, A. & Ishihara, S. Double-exchange interaction in optically induced nonequilibrium state: A conversion from ferromagnetic to antiferromagnetic structure. Phys. Rev. Lett. 119, 207202 (2017).
pubmed: 29219363 doi: 10.1103/PhysRevLett.119.207202
Gray, A. X. et al. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films. Phys. Rev. Lett. 116, 116403 (2016).
pubmed: 27035314 doi: 10.1103/PhysRevLett.116.116403
Wall, S. et al. Tracking the evolution of electronic and structural properties of vo
doi: 10.1103/PhysRevB.87.115126
Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic vo
pubmed: 25342797 doi: 10.1126/science.1253779
Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).
pubmed: 10061239 doi: 10.1103/PhysRevLett.76.4250
Gort, R. et al. Early stages of ultrafast spin dynamics in a 3d ferromagnet. Phys. Rev. Lett. 121, 087206 (2018).
pubmed: 30192573 doi: 10.1103/PhysRevLett.121.087206
Eich, S. et al. Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition in cobalt. Sci. Adv. 3, e1602094 (2017).
pubmed: 28378016 pmcid: 5365247 doi: 10.1126/sciadv.1602094
Tengdin, P. et al. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel. Sci. Adv. 4, eaap9744 (2018).
pubmed: 29511738 pmcid: 5834307 doi: 10.1126/sciadv.aap9744
Andres, B. & Weinelt, M. Spin-resolved electronic structure of 3d transition metals during ultrafast demagnetization. J. Magn. Magn. Mater. 501, 166475 (2020).
doi: 10.1016/j.jmmm.2020.166475
Eschenlohr, A. et al. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 12, 332–336 (2013).
pubmed: 23353629 doi: 10.1038/nmat3546
Bergeard, N. et al. Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 117, 147203 (2016).
pubmed: 27740830 doi: 10.1103/PhysRevLett.117.147203
Carva, K., Battiato, M., Legut, D. & Oppeneer, P. M. Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets. Phys. Rev. B 87, 184425 (2013).
doi: 10.1103/PhysRevB.87.184425
Matsubara, M. et al. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite gd
pubmed: 18233185 doi: 10.1103/PhysRevLett.99.207401
Bossini, D. et al. Femtosecond activation of magnetoelectricity. Nat. Phys. 14, 370–374 (2018).
doi: 10.1038/s41567-017-0036-1
Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).
doi: 10.1103/RevModPhys.82.2731
Fallot, M. & Hocart, R. Sur l’apparition du ferromagnétisme par élévation du température dans des alliages de fer et de rhodium. Rev. Sci. 77, 498–501 (1939).
Kouvel, J. S. & Hartelius, C. C. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 33, 1343–1344 (1962).
doi: 10.1063/1.1728721
Maat, S., Thiele, J.-U. U. & Fullerton, E. E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 72, 214432 (2005).
doi: 10.1103/PhysRevB.72.214432
Baldasseroni, C. et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, 262401 (2012).
doi: 10.1063/1.4730957
Uhlíř, V., Arregi, J. A. & Fullerton, E. E. Colossal magnetic phase transition asymmetry in mesoscale ferh stripes. Nat. Commun. 7, 13113 (2016).
pubmed: 27725642 pmcid: 5062592 doi: 10.1038/ncomms13113
Keavney, D. J. et al. Phase coexistence and kinetic arrest in the magnetostructural transition of the ordered alloy ferh. Sci. Rep. 8, 1778 (2018).
pubmed: 29379069 pmcid: 5789070 doi: 10.1038/s41598-018-20101-0
Ju, G. et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004).
pubmed: 15600878 doi: 10.1103/PhysRevLett.93.197403
Thiele, J.-U., Buess, M. & Back, C. H. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in ferh on a sub-picosecond time scale. Appl. Phys. Lett. 85, 2857–2859 (2004).
doi: 10.1063/1.1799244
Bergman, B. et al. Identifying growth mechanisms for laser-induced magnetization in ferh. Phys. Rev. B 73, 060407(R) (2006).
doi: 10.1103/PhysRevB.73.060407
Radu, I. et al. Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved x-ray magnetic circular dichroism. Phys. Rev. B 81, 104415 (2010).
doi: 10.1103/PhysRevB.81.104415
Mariager, S. O. et al. Structural and magnetic dynamics of a laser induced phase transition in ferh. Phys. Rev. Lett. 108, 087201 (2012).
pubmed: 22463562 doi: 10.1103/PhysRevLett.108.087201
Quirin, F. et al. Structural dynamics in FeRh during a laser-induced metamagnetic phase transition. Phys. Rev. B 85, 020103(R) (2012).
doi: 10.1103/PhysRevB.85.020103
Lee, J. S., Vescovo, E., Plucinski, L., Schneider, C. M. & Kao, C. C. Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100). Phys. Rev. B 82, 224410 (2010).
doi: 10.1103/PhysRevB.82.224410
Gray, A. X. et al. Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. Phys. Rev. Lett. 108, 257208 (2012).
pubmed: 23004654 doi: 10.1103/PhysRevLett.108.257208
Pressacco, F. et al. Stable room-temperature ferromagnetic phase at the FeRh(100) surface. Sci. Rep. 6, 22383 (2016).
pubmed: 26935274 pmcid: 4776116 doi: 10.1038/srep22383
Maiti, K., Malagoli, M. C., Magnano, E., Dallmeyer, A. & Carbone, C. Electronic band structure of gd: A consistent description. Phys. Rev. Lett. 86, 2846–2849 (2001).
pubmed: 11290054 doi: 10.1103/PhysRevLett.86.2846
Beaulieu, N. et al. Probing ultrafast dynamics in electronic structure of epitaxial gd(0001) on w(110). J. Electron Spectrosc. 189, 40–45 (2013).
doi: 10.1016/j.elspec.2013.06.005
Sirotti, F. et al. Multiphoton k-resolved photoemission from gold surface states with 800-nm femtosecond laser pulses. Phys. Rev. B 90, 035401 (2014).
doi: 10.1103/PhysRevB.90.035401
Pressacco, F. et al. Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission. Struct. Dyn. 5, 034501 (2018).
pubmed: 29888296 pmcid: 5966309 doi: 10.1063/1.5027809
Sandratskii, L. M. & Mavropoulos, P. Magnetic excitations and femtomagnetism of ferh: A first-principles study. Phys. Rev. B 83, 174408 (2011).
doi: 10.1103/PhysRevB.83.174408
Gruner, M. E., Hoffmann, E. & Entel, P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α − FeRh. Phys. Rev. B 67, 064415 (2003).
doi: 10.1103/PhysRevB.67.064415
Gu, R. Y. & Antropov, V. P. Dominance of the spin-wave contribution to the magnetic phase transition in ferh. Phys. Rev. B 72, 012403 (2005).
doi: 10.1103/PhysRevB.72.012403
lliott, P., Müller, T., Dewhurst, J. K., Sharma, S. & Gross, E. K. U. Ultrafast laser induced local magnetization dynamics in heusler compounds. Sci. Rep. 6, 38911 (2016).
pubmed: 27966585 pmcid: 5155284 doi: 10.1038/srep38911
Dewhurst, J. K., Elliott, P., Shallcross, S., Gross, E. K. U. & Sharma, S. Laser-induced intersite spin transfer. Nano Lett. 18, 1842–1848 (2018).
pubmed: 29424230 doi: 10.1021/acs.nanolett.7b05118
Hofherr, M. et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 6, eaay8717 (2020).
pubmed: 32010774 pmcid: 6968944 doi: 10.1126/sciadv.aay8717
Arregi, J. A., Caha, O. & Uhlíř, V. Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates. Phys. Rev. B 101, 174413 (2020).
doi: 10.1103/PhysRevB.101.174413
Uhlíř, V. et al. Single-layer graphene on epitaxial FeRh thin films. Appl. Surf. Sci. 514, 145923 (2020).
doi: 10.1016/j.apsusc.2020.145923
Martins, M. et al. Monochromator beamline for FLASH. Rev. Sci. Instr. 77, 115108 (2006).
doi: 10.1063/1.2364148
Gerasimova, N., Dziarzhytski, S. & Feldhaus, J. The monochromator beamline at flash: performance, capabilities and upgrade plans. J. Mod. Opt. 58, 1480–1485 (2011).
doi: 10.1080/09500340.2011.588344
Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336–342 (2007).
doi: 10.1038/nphoton.2007.76
Rossbach, J., Schneider, J. R. & Wurth, W. 10 years of pioneering x-ray science at the free-electron laser flash at desy. Phys. Rep. 808, 1–74 (2019).
doi: 10.1016/j.physrep.2019.02.002
Kutnyakhov, D. et al. Time-and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. Rev. Sci. Instrum. 91, 013109 (2020).
pubmed: 32012554 doi: 10.1063/1.5118777
Schönhense, G., Medjanik, K. & Elmers, H. J. Space-, time- and spin-resolved photoemission. J. Electron Spectros. Relat. Phenomena 200, 94–118 (2015).
doi: 10.1016/j.elspec.2015.05.016
Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
pubmed: 21832390
Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum espresso. J. Phys.: Condens. Matter 29, 465901 (2017).
pubmed: 29064822
Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).
doi: 10.1016/j.cpc.2009.02.003
Sangalli, D. & Marini, A. Ultra-fast carriers relaxation in bulk silicon following photo-excitation with a short and polarized laser pulse. Europhys. Lett. 110, 47004 (2015).
doi: 10.1209/0295-5075/110/47004
Aschauer, U., Braddell, R., Brechbühl, S. A., Derlet, P. M. & Spaldin, N. A. Strain-induced structural instability in ferh. Phys. Rev. B 94, 014109 (2016).
doi: 10.1103/PhysRevB.94.014109
Wolloch, M. et al. Impact of lattice dynamics on the phase stability of metamagnetic ferh: Bulk and thin films. Phys. Rev. B 94, 174435 (2016).
doi: 10.1103/PhysRevB.94.174435
Zarkevich, N. A. & Johnson, D. D. Ferh ground state and martensitic transformation. Phys. Rev. B 97, 014202 (2018).
doi: 10.1103/PhysRevB.97.014202
Yeh, J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤ z ≤103. At. Data Nucl. Data Tables 32, 1–155 (1985).
doi: 10.1016/0092-640X(85)90016-6
Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys.: Condens. Matter 31, 325902 (2019).
pubmed: 30943462
Shirane, G., Chen, C., Flinn, P. & Nathans, R. Hyperfine fields and magnetic moments in the fe–rh system. J. Appl. Phys. 34, 1044–1045 (1963).
doi: 10.1063/1.1729362

Auteurs

Federico Pressacco (F)

The Hamburg Centre for Ultrafast Imaging, Hamburg University, Hamburg, Germany. federico.pressacco@desy.de.
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany. federico.pressacco@desy.de.

Davide Sangalli (D)

Istituto di Struttura della Materia-Consiglio Nazionale delle Ricerche (CNR-ISM), Division of Ultrafast Processes in Materials (FLASHit), Monterotondo Stazione, Italy.
European Theoretical Spectroscopy Facility (ETSF).

Vojtěch Uhlíř (V)

CEITEC BUT, Brno University of Technology, Brno, Czech Republic.
Institute of Physical Engineering, Brno University of Technology, Brno, Czech Republic.

Dmytro Kutnyakhov (D)

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

Jon Ander Arregi (JA)

CEITEC BUT, Brno University of Technology, Brno, Czech Republic.

Steinn Ymir Agustsson (SY)

Johannes Gutenberg-Universität, Institute of Physics, Mainz, Germany.

Günter Brenner (G)

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

Harald Redlin (H)

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

Michael Heber (M)

Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

Dmitry Vasilyev (D)

Johannes Gutenberg-Universität, Institute of Physics, Mainz, Germany.

Jure Demsar (J)

Johannes Gutenberg-Universität, Institute of Physics, Mainz, Germany.

Gerd Schönhense (G)

Johannes Gutenberg-Universität, Institute of Physics, Mainz, Germany.

Matteo Gatti (M)

European Theoretical Spectroscopy Facility (ETSF).
LSI, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France.

Andrea Marini (A)

Istituto di Struttura della Materia-Consiglio Nazionale delle Ricerche (CNR-ISM), Division of Ultrafast Processes in Materials (FLASHit), Monterotondo Stazione, Italy.
European Theoretical Spectroscopy Facility (ETSF).

Wilfried Wurth (W)

The Hamburg Centre for Ultrafast Imaging, Hamburg University, Hamburg, Germany.
Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.

Fausto Sirotti (F)

Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France.
Physique de la Matiére Condensée, CNRS and École Polytechnique, IP Paris, Palaiseau, France.

Classifications MeSH