Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 Aug 2021
24 Aug 2021
Historique:
received:
18
12
2020
accepted:
22
07
2021
entrez:
25
8
2021
pubmed:
26
8
2021
medline:
26
8
2021
Statut:
epublish
Résumé
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
Identifiants
pubmed: 34429414
doi: 10.1038/s41467-021-25347-3
pii: 10.1038/s41467-021-25347-3
pmc: PMC8384879
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5088Commentaires et corrections
Type : ErratumIn
Informations de copyright
© 2021. The Author(s).
Références
Li, T. et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature 496, 69–73 (2013).
pubmed: 23552945
doi: 10.1038/nature11934
De Jong, S. et al. Speed limit of the insulator–metal transition in magnetite. Nat. Mater. 12, 882–886 (2013).
pubmed: 23892787
doi: 10.1038/nmat3718
Polesya, S., Mankovsky, S., Ködderitzsch, D., Minár, J. & Ebert, H. Finite-temperature magnetism of ferh compounds. Phys. Rev. B 93, 024423 (2016).
doi: 10.1103/PhysRevB.93.024423
Wollmann, L., Nayak, A. K., Parkin, S. S. & Felser, C. Heusler 4.0: tunable materials. Annu. Rev. Mater. Res. 47, 247–270 (2017).
doi: 10.1146/annurev-matsci-070616-123928
Rohwer, T. et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature 471, 490–493 (2011).
pubmed: 21389987
doi: 10.1038/nature09829
Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
pubmed: 21233381
doi: 10.1126/science.1197294
Singer, A. et al. Photoinduced enhancement of the charge density wave amplitude. Phys. Rev. Lett. 117, 056401 (2016).
pubmed: 27517781
doi: 10.1103/PhysRevLett.117.056401
Wegkamp, D. et al. Instantaneous band gap collapse in photoexcited monoclinic vo
pubmed: 25479507
doi: 10.1103/PhysRevLett.113.216401
Shao, Z., Cao, X., Luo, H. & Jin, P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 10, 581–605 (2018).
doi: 10.1038/s41427-018-0061-2
Perfetti, L. et al. Time evolution of the electronic structure of 1t − tas
pubmed: 17026203
doi: 10.1103/PhysRevLett.97.067402
Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).
pubmed: 24723607
doi: 10.1126/science.1241591
Ono, A. & Ishihara, S. Double-exchange interaction in optically induced nonequilibrium state: A conversion from ferromagnetic to antiferromagnetic structure. Phys. Rev. Lett. 119, 207202 (2017).
pubmed: 29219363
doi: 10.1103/PhysRevLett.119.207202
Gray, A. X. et al. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films. Phys. Rev. Lett. 116, 116403 (2016).
pubmed: 27035314
doi: 10.1103/PhysRevLett.116.116403
Wall, S. et al. Tracking the evolution of electronic and structural properties of vo
doi: 10.1103/PhysRevB.87.115126
Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic vo
pubmed: 25342797
doi: 10.1126/science.1253779
Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).
pubmed: 10061239
doi: 10.1103/PhysRevLett.76.4250
Gort, R. et al. Early stages of ultrafast spin dynamics in a 3d ferromagnet. Phys. Rev. Lett. 121, 087206 (2018).
pubmed: 30192573
doi: 10.1103/PhysRevLett.121.087206
Eich, S. et al. Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition in cobalt. Sci. Adv. 3, e1602094 (2017).
pubmed: 28378016
pmcid: 5365247
doi: 10.1126/sciadv.1602094
Tengdin, P. et al. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel. Sci. Adv. 4, eaap9744 (2018).
pubmed: 29511738
pmcid: 5834307
doi: 10.1126/sciadv.aap9744
Andres, B. & Weinelt, M. Spin-resolved electronic structure of 3d transition metals during ultrafast demagnetization. J. Magn. Magn. Mater. 501, 166475 (2020).
doi: 10.1016/j.jmmm.2020.166475
Eschenlohr, A. et al. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 12, 332–336 (2013).
pubmed: 23353629
doi: 10.1038/nmat3546
Bergeard, N. et al. Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 117, 147203 (2016).
pubmed: 27740830
doi: 10.1103/PhysRevLett.117.147203
Carva, K., Battiato, M., Legut, D. & Oppeneer, P. M. Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets. Phys. Rev. B 87, 184425 (2013).
doi: 10.1103/PhysRevB.87.184425
Matsubara, M. et al. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite gd
pubmed: 18233185
doi: 10.1103/PhysRevLett.99.207401
Bossini, D. et al. Femtosecond activation of magnetoelectricity. Nat. Phys. 14, 370–374 (2018).
doi: 10.1038/s41567-017-0036-1
Kirilyuk, A., Kimel, A. V. & Rasing, T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 82, 2731–2784 (2010).
doi: 10.1103/RevModPhys.82.2731
Fallot, M. & Hocart, R. Sur l’apparition du ferromagnétisme par élévation du température dans des alliages de fer et de rhodium. Rev. Sci. 77, 498–501 (1939).
Kouvel, J. S. & Hartelius, C. C. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 33, 1343–1344 (1962).
doi: 10.1063/1.1728721
Maat, S., Thiele, J.-U. U. & Fullerton, E. E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 72, 214432 (2005).
doi: 10.1103/PhysRevB.72.214432
Baldasseroni, C. et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, 262401 (2012).
doi: 10.1063/1.4730957
Uhlíř, V., Arregi, J. A. & Fullerton, E. E. Colossal magnetic phase transition asymmetry in mesoscale ferh stripes. Nat. Commun. 7, 13113 (2016).
pubmed: 27725642
pmcid: 5062592
doi: 10.1038/ncomms13113
Keavney, D. J. et al. Phase coexistence and kinetic arrest in the magnetostructural transition of the ordered alloy ferh. Sci. Rep. 8, 1778 (2018).
pubmed: 29379069
pmcid: 5789070
doi: 10.1038/s41598-018-20101-0
Ju, G. et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004).
pubmed: 15600878
doi: 10.1103/PhysRevLett.93.197403
Thiele, J.-U., Buess, M. & Back, C. H. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in ferh on a sub-picosecond time scale. Appl. Phys. Lett. 85, 2857–2859 (2004).
doi: 10.1063/1.1799244
Bergman, B. et al. Identifying growth mechanisms for laser-induced magnetization in ferh. Phys. Rev. B 73, 060407(R) (2006).
doi: 10.1103/PhysRevB.73.060407
Radu, I. et al. Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved x-ray magnetic circular dichroism. Phys. Rev. B 81, 104415 (2010).
doi: 10.1103/PhysRevB.81.104415
Mariager, S. O. et al. Structural and magnetic dynamics of a laser induced phase transition in ferh. Phys. Rev. Lett. 108, 087201 (2012).
pubmed: 22463562
doi: 10.1103/PhysRevLett.108.087201
Quirin, F. et al. Structural dynamics in FeRh during a laser-induced metamagnetic phase transition. Phys. Rev. B 85, 020103(R) (2012).
doi: 10.1103/PhysRevB.85.020103
Lee, J. S., Vescovo, E., Plucinski, L., Schneider, C. M. & Kao, C. C. Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100). Phys. Rev. B 82, 224410 (2010).
doi: 10.1103/PhysRevB.82.224410
Gray, A. X. et al. Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. Phys. Rev. Lett. 108, 257208 (2012).
pubmed: 23004654
doi: 10.1103/PhysRevLett.108.257208
Pressacco, F. et al. Stable room-temperature ferromagnetic phase at the FeRh(100) surface. Sci. Rep. 6, 22383 (2016).
pubmed: 26935274
pmcid: 4776116
doi: 10.1038/srep22383
Maiti, K., Malagoli, M. C., Magnano, E., Dallmeyer, A. & Carbone, C. Electronic band structure of gd: A consistent description. Phys. Rev. Lett. 86, 2846–2849 (2001).
pubmed: 11290054
doi: 10.1103/PhysRevLett.86.2846
Beaulieu, N. et al. Probing ultrafast dynamics in electronic structure of epitaxial gd(0001) on w(110). J. Electron Spectrosc. 189, 40–45 (2013).
doi: 10.1016/j.elspec.2013.06.005
Sirotti, F. et al. Multiphoton k-resolved photoemission from gold surface states with 800-nm femtosecond laser pulses. Phys. Rev. B 90, 035401 (2014).
doi: 10.1103/PhysRevB.90.035401
Pressacco, F. et al. Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission. Struct. Dyn. 5, 034501 (2018).
pubmed: 29888296
pmcid: 5966309
doi: 10.1063/1.5027809
Sandratskii, L. M. & Mavropoulos, P. Magnetic excitations and femtomagnetism of ferh: A first-principles study. Phys. Rev. B 83, 174408 (2011).
doi: 10.1103/PhysRevB.83.174408
Gruner, M. E., Hoffmann, E. & Entel, P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α − FeRh. Phys. Rev. B 67, 064415 (2003).
doi: 10.1103/PhysRevB.67.064415
Gu, R. Y. & Antropov, V. P. Dominance of the spin-wave contribution to the magnetic phase transition in ferh. Phys. Rev. B 72, 012403 (2005).
doi: 10.1103/PhysRevB.72.012403
lliott, P., Müller, T., Dewhurst, J. K., Sharma, S. & Gross, E. K. U. Ultrafast laser induced local magnetization dynamics in heusler compounds. Sci. Rep. 6, 38911 (2016).
pubmed: 27966585
pmcid: 5155284
doi: 10.1038/srep38911
Dewhurst, J. K., Elliott, P., Shallcross, S., Gross, E. K. U. & Sharma, S. Laser-induced intersite spin transfer. Nano Lett. 18, 1842–1848 (2018).
pubmed: 29424230
doi: 10.1021/acs.nanolett.7b05118
Hofherr, M. et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 6, eaay8717 (2020).
pubmed: 32010774
pmcid: 6968944
doi: 10.1126/sciadv.aay8717
Arregi, J. A., Caha, O. & Uhlíř, V. Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates. Phys. Rev. B 101, 174413 (2020).
doi: 10.1103/PhysRevB.101.174413
Uhlíř, V. et al. Single-layer graphene on epitaxial FeRh thin films. Appl. Surf. Sci. 514, 145923 (2020).
doi: 10.1016/j.apsusc.2020.145923
Martins, M. et al. Monochromator beamline for FLASH. Rev. Sci. Instr. 77, 115108 (2006).
doi: 10.1063/1.2364148
Gerasimova, N., Dziarzhytski, S. & Feldhaus, J. The monochromator beamline at flash: performance, capabilities and upgrade plans. J. Mod. Opt. 58, 1480–1485 (2011).
doi: 10.1080/09500340.2011.588344
Ackermann, W. et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 336–342 (2007).
doi: 10.1038/nphoton.2007.76
Rossbach, J., Schneider, J. R. & Wurth, W. 10 years of pioneering x-ray science at the free-electron laser flash at desy. Phys. Rep. 808, 1–74 (2019).
doi: 10.1016/j.physrep.2019.02.002
Kutnyakhov, D. et al. Time-and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. Rev. Sci. Instrum. 91, 013109 (2020).
pubmed: 32012554
doi: 10.1063/1.5118777
Schönhense, G., Medjanik, K. & Elmers, H. J. Space-, time- and spin-resolved photoemission. J. Electron Spectros. Relat. Phenomena 200, 94–118 (2015).
doi: 10.1016/j.elspec.2015.05.016
Giannozzi, P. et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
pubmed: 21832390
Giannozzi, P. et al. Advanced capabilities for materials modelling with quantum espresso. J. Phys.: Condens. Matter 29, 465901 (2017).
pubmed: 29064822
Marini, A., Hogan, C., Grüning, M. & Varsano, D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 180, 1392–1403 (2009).
doi: 10.1016/j.cpc.2009.02.003
Sangalli, D. & Marini, A. Ultra-fast carriers relaxation in bulk silicon following photo-excitation with a short and polarized laser pulse. Europhys. Lett. 110, 47004 (2015).
doi: 10.1209/0295-5075/110/47004
Aschauer, U., Braddell, R., Brechbühl, S. A., Derlet, P. M. & Spaldin, N. A. Strain-induced structural instability in ferh. Phys. Rev. B 94, 014109 (2016).
doi: 10.1103/PhysRevB.94.014109
Wolloch, M. et al. Impact of lattice dynamics on the phase stability of metamagnetic ferh: Bulk and thin films. Phys. Rev. B 94, 174435 (2016).
doi: 10.1103/PhysRevB.94.174435
Zarkevich, N. A. & Johnson, D. D. Ferh ground state and martensitic transformation. Phys. Rev. B 97, 014202 (2018).
doi: 10.1103/PhysRevB.97.014202
Yeh, J. & Lindau, I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤ z ≤103. At. Data Nucl. Data Tables 32, 1–155 (1985).
doi: 10.1016/0092-640X(85)90016-6
Sangalli, D. et al. Many-body perturbation theory calculations using the yambo code. J. Phys.: Condens. Matter 31, 325902 (2019).
pubmed: 30943462
Shirane, G., Chen, C., Flinn, P. & Nathans, R. Hyperfine fields and magnetic moments in the fe–rh system. J. Appl. Phys. 34, 1044–1045 (1963).
doi: 10.1063/1.1729362