Human Amniotic Mesenchymal Stem Cells Inhibit aGVHD by Regulating Balance of Treg and T Effector Cells.
NPG mice
acute graft versus host disease
amniotic mesenchymal stem cells
humanized mouse model
immunomodulatory
Journal
Journal of inflammation research
ISSN: 1178-7031
Titre abrégé: J Inflamm Res
Pays: New Zealand
ID NLM: 101512684
Informations de publication
Date de publication:
2021
2021
Historique:
received:
10
06
2021
accepted:
27
07
2021
entrez:
25
8
2021
pubmed:
26
8
2021
medline:
26
8
2021
Statut:
epublish
Résumé
Acute graft versus host disease (aGVHD) remains a leading cause of transplant-related mortality following allogeneic haematopoietic cell transplantation (allo-HCT). Human amniotic mesenchymal stem cells (hAMSCs) are a novel mesenchymal stem cells (MSCs), which have stronger proliferation and immunomodulatory ability compared with bone marrow mesenchymal stem cells (BM-MSCs). Besides, as the amniotic membrane is often treated as medical waste after delivery, hAMSCs can be obtained conveniently and noninvasively. The aim of this study was to explore the therapeutic efficacy and underlying mechanisms of hAMSCs transplantation for the humanized aGVHD mouse model. We established a humanized aGVHD mouse model by transplanting human peripheral blood mononuclear cells (PBMCs) into NOD-Prkdc We successfully established a humanized aGVHD mouse model using NPG mice. The hAMSCs have the ability to inhibit aGVHD in this mouse model through reduced villous blunting and lymphocyte infiltration of the gut while reducing inflammatory edema, tissue destruction and lymphocyte infiltration into the parenchyma of the liver and lung. hAMSCs suppressed CD3+CD4+ T and CD3+CD8+ T cell expression and increased the proportion of Tregs, and besides, hAMSCs can reduce the levels of IL-17A, INF-γ, and TNF in aGVHD target organs. The NPG murine environment was capable of activating human T cells to produce aGVHD pathology to mimic aGVHD as in humans. The hAMSCs controlled aGVHD by decreasing inflammatory cytokine secretion within target organs by modulating the balance of Tregs and T effector cells in humanized mice.
Sections du résumé
BACKGROUND
BACKGROUND
Acute graft versus host disease (aGVHD) remains a leading cause of transplant-related mortality following allogeneic haematopoietic cell transplantation (allo-HCT). Human amniotic mesenchymal stem cells (hAMSCs) are a novel mesenchymal stem cells (MSCs), which have stronger proliferation and immunomodulatory ability compared with bone marrow mesenchymal stem cells (BM-MSCs). Besides, as the amniotic membrane is often treated as medical waste after delivery, hAMSCs can be obtained conveniently and noninvasively. The aim of this study was to explore the therapeutic efficacy and underlying mechanisms of hAMSCs transplantation for the humanized aGVHD mouse model.
METHODS
METHODS
We established a humanized aGVHD mouse model by transplanting human peripheral blood mononuclear cells (PBMCs) into NOD-Prkdc
RESULTS
RESULTS
We successfully established a humanized aGVHD mouse model using NPG mice. The hAMSCs have the ability to inhibit aGVHD in this mouse model through reduced villous blunting and lymphocyte infiltration of the gut while reducing inflammatory edema, tissue destruction and lymphocyte infiltration into the parenchyma of the liver and lung. hAMSCs suppressed CD3+CD4+ T and CD3+CD8+ T cell expression and increased the proportion of Tregs, and besides, hAMSCs can reduce the levels of IL-17A, INF-γ, and TNF in aGVHD target organs.
CONCLUSION
CONCLUSIONS
The NPG murine environment was capable of activating human T cells to produce aGVHD pathology to mimic aGVHD as in humans. The hAMSCs controlled aGVHD by decreasing inflammatory cytokine secretion within target organs by modulating the balance of Tregs and T effector cells in humanized mice.
Identifiants
pubmed: 34429630
doi: 10.2147/JIR.S323054
pii: 323054
pmc: PMC8378934
doi:
Types de publication
Journal Article
Langues
eng
Pagination
3985-3999Informations de copyright
© 2021 Gao et al.
Déclaration de conflit d'intérêts
The authors report no conflicts of interest in this work.
Références
Cell Tissue Res. 2014 Sep;357(3):571-82
pubmed: 24906288
Front Immunol. 2020 Jun 25;11:1338
pubmed: 32670295
J Immunol. 1990 Jun 15;144(12):4548-54
pubmed: 1972159
Stem Cell Res Ther. 2015 Oct 23;6:202
pubmed: 26497134
Blood. 1996 Oct 15;88(8):3230-9
pubmed: 8963063
Front Cell Dev Biol. 2019 Nov 21;7:255
pubmed: 31824942
Sci Rep. 2018 Sep 10;8(1):13535
pubmed: 30201960
Nature. 2011 Jul 17;475(7357):514-8
pubmed: 21765430
Dis Model Mech. 2011 May;4(3):318-33
pubmed: 21558065
Nat Rev Clin Oncol. 2014 Sep;11(9):536-47
pubmed: 24958183
Blood. 2019 May 9;133(19):2043-2055
pubmed: 30803992
Clin Exp Immunol. 2013 May;172(2):333-48
pubmed: 23574329
Hum Cell. 2014 Oct;27(4):137-50
pubmed: 24903975
Transfusion. 2014 May;54(5):1418-37
pubmed: 24898458
Autoimmun Rev. 2011 May;10(7):410-5
pubmed: 21256250
Cancer Discov. 2019 Oct;9(10):1422-1437
pubmed: 31340937
J Cell Biochem. 2016 Dec;117(12):2844-2853
pubmed: 27167148
EClinicalMedicine. 2020 Jan 17;19:100249
pubmed: 31989101
Rheumatology (Oxford). 2015 Feb;54(2):210-8
pubmed: 25288785
Placenta. 2019 Sep 1;84:50-56
pubmed: 31272680
Cell Mol Immunol. 2012 May;9(3):208-14
pubmed: 22327211
Blood. 2013 Sep 5;122(10):1690-1
pubmed: 24009174
Haematologica. 2019 Nov;104(11):2314-2323
pubmed: 30792213
Stem Cell Res Ther. 2020 Aug 8;11(1):345
pubmed: 32771052
Front Immunol. 2019 Mar 06;10:309
pubmed: 30906290
Clin Exp Immunol. 2009 Jul;157(1):104-18
pubmed: 19659776
Sci Rep. 2021 Jan 28;11(1):2406
pubmed: 33510297
Stem Cells. 2017 Jun;35(6):1446-1460
pubmed: 28316123
Best Pract Res Clin Obstet Gynaecol. 2016 Feb;31:13-29
pubmed: 26547389
Cytotherapy. 2015 Nov;17(11):1545-59
pubmed: 26256683
Blood. 2002 May 15;99(10):3838-43
pubmed: 11986244
Blood. 2007 May 15;109(10):4119-26
pubmed: 17234737
Immunology. 2012 Nov;137(3):206-13
pubmed: 22804624
Clin Immunol. 2008 Mar;126(3):303-14
pubmed: 18096436
Leukemia. 2020 May;34(5):1229-1240
pubmed: 32242050
Blood. 2012 Jan 5;119(1):16-25
pubmed: 21948301
BMJ Open. 2019 Jul 9;9(7):e026403
pubmed: 31289066
Inflammation. 2019 Oct;42(5):1730-1740
pubmed: 31227956
Blood. 2008 Feb 1;111(3):1327-33
pubmed: 17951526
Tissue Eng Regen Med. 2017 Nov 20;14(6):679-698
pubmed: 30603520
Stem Cells Cloning. 2014 Mar 24;7:53-63
pubmed: 24744610
Nat Med. 2007 Feb;13(2):139-45
pubmed: 17290272
Blood. 2015 Sep 24;126(13):1609-20
pubmed: 26206951
Mech Ageing Dev. 2001 May 31;122(7):713-34
pubmed: 11322994
Cytotechnology. 2008 Sep;58(1):33-42
pubmed: 19002775
Oncoimmunology. 2017 Jan 6;6(3):e1277307
pubmed: 28405499
Eur J Haematol. 2016 Dec;97(6):528-537
pubmed: 27118602
Science. 1999 Apr 2;284(5411):143-7
pubmed: 10102814
PLoS One. 2014 Feb 14;9(2):e88319
pubmed: 24551087
Stem Cell Rev Rep. 2015 Jun;11(3):394-407
pubmed: 25348066
Blood. 2009 May 14;113(20):5002-9
pubmed: 19258593
Sci China Life Sci. 2020 Mar;63(3):429-442
pubmed: 31879847
Stem Cells. 2013 Sep;31(9):1980-91
pubmed: 23712682
Blood. 2005 Feb 15;105(4):1815-22
pubmed: 15494428
Int J Mol Sci. 2021 Jan 19;22(2):
pubmed: 33478081
Circ Res. 2015 Mar 27;116(7):1216-30
pubmed: 25814683
Front Endocrinol (Lausanne). 2020 Oct 02;11:543623
pubmed: 33133012
Stem Cell Res Ther. 2015 Mar 11;6:19
pubmed: 25890330
Nan Fang Yi Ke Da Xue Xue Bao. 2017 Jun 20;37(6):780-785
pubmed: 28669952
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2016 Jun;24(3):858-64
pubmed: 27342523
Tissue Eng Part C Methods. 2018 Jun;24(6):313-321
pubmed: 29631483
Int Immunopharmacol. 2012 Jun;13(2):219-24
pubmed: 22487126
Semin Oncol. 2003 Aug;30(4):509-19
pubmed: 12939720
Front Immunol. 2017 Mar 20;8:79
pubmed: 28373870
Nat Rev Immunol. 2012 May 11;12(6):443-58
pubmed: 22576252