Photocatalytic solar hydrogen production from water on a 100-m


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
10 2021
Historique:
received: 23 10 2020
accepted: 12 08 2021
pubmed: 26 8 2021
medline: 26 8 2021
entrez: 25 8 2021
Statut: ppublish

Résumé

The unprecedented impact of human activity on Earth's climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy

Identifiants

pubmed: 34433207
doi: 10.1038/s41586-021-03907-3
pii: 10.1038/s41586-021-03907-3
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

304-307

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Hisatomi, T. & Domen, K. Reaction systems for solar hydrogen production via water splitting with particulate semiconductor. Nat. Catal. 2, 387–399 (2019).
doi: 10.1038/s41929-019-0242-6
Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J. Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).
doi: 10.1039/C8CS00699G
Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nat. Commun. 7, 13237 (2016).
doi: 10.1038/ncomms13237
Goto, Y. et al. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen production. Joule 2, 509–520 (2018).
doi: 10.1016/j.joule.2017.12.009
Tanihara, N., Nakanishi, S. & Yoshinaga, T. Gas and vapor separation through polyimide membranes. J. Jpn. Petrol. Inst. 59, 276–282 (2016).
doi: 10.1627/jpi.59.276
Pagliaro, M. Preparing for the future: solar energy and bioeconomy in the United Arab Emirates. Energy Sci. Eng. 7, 1451–1457 (2019).
doi: 10.1002/ese3.440
Boretti, A., Castelletto, S. & Al-Zubaidy, S. Concentrating solar power tower technology: present status and outlook. Nonlinear Eng. 8, 10–31 (2019).
doi: 10.1515/nleng-2017-0171
Wang, Q. et al. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nat. Mater. 15, 611–615 (2016).
doi: 10.1038/nmat4589
Takata, T. et al. Photocatalytic water splitting with quantum efficiency of almost unity. Nature 581, 411–414 (2020).
doi: 10.1038/s41586-020-2278-9
Wang, Z. et al. Overall water splitting by Ta
doi: 10.1038/s41929-018-0134-1
Wang, Q. et al. Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat. Mater. 18, 827–832 (2019).
doi: 10.1038/s41563-019-0399-z
Lyu, H. et al. An Al-doped SrTiO
doi: 10.1039/C8SC05757E
Yamada, T. & Domen, K. Development of sunlight driven water splitting devices towards future artificial photosynthetic industry. ChemEngineering 2, 36 (2018).
doi: 10.3390/chemengineering2030036
Maeda, K. et al. Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga
doi: 10.1021/jp061829o
Peñas, P. et al. Decoupling gas evolution from water-splitting electrodes. J. Electrochem. Soc. 166, H769–H776 (2019).
doi: 10.1149/2.1381914jes
Kemppainen, E. et al. Effect of the ambient conditions on the operation of a large-area integrated photovoltaic-electrolyser. Sustain. Energy Fuel 4, 4831–4847 (2020).
doi: 10.1039/D0SE00921K
Wang, Q. et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017).
doi: 10.1021/jacs.6b12164
Sayama, K. & Miseki, Y. Research and development of solar hydrogen production – toward the realization of ingenious photocatalysis-electrolysis hybrid system. Synthesiology (Eng. edn) 7, 79–91 (2014).
Schroeder, V. & Holtappels K. Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures. In Proc. International Conference on Hydrogen Safety 120001 (ICHS, 2005).

Auteurs

Hiroshi Nishiyama (H)

Office of University Professors, The University of Tokyo, Tokyo, Japan.

Taro Yamada (T)

Office of University Professors, The University of Tokyo, Tokyo, Japan.

Mamiko Nakabayashi (M)

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan.

Yoshiki Maehara (Y)

Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Tokyo, Japan.
FUJIFILM Corporation, Ashigarakami-gun, Kanagawa, Japan.

Masaharu Yamaguchi (M)

Office of University Professors, The University of Tokyo, Tokyo, Japan.

Yasuko Kuromiya (Y)

Office of University Professors, The University of Tokyo, Tokyo, Japan.

Yoshie Nagatsuma (Y)

Office of University Professors, The University of Tokyo, Tokyo, Japan.

Hiromasa Tokudome (H)

Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Tokyo, Japan.
Research Institute, TOTO Ltd., Chigasaki, Kanagawa, Japan.

Seiji Akiyama (S)

Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Tokyo, Japan.
Mitsubishi Chemical Corporation, Science & Innovation Center, Yokohama-shi, Kanagawa, Japan.

Tomoaki Watanabe (T)

Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki-shi, Kanagawa, Japan.

Ryoichi Narushima (R)

Office of University Professors, The University of Tokyo, Tokyo, Japan.

Sayuri Okunaka (S)

Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Tokyo, Japan.
Research Institute, TOTO Ltd., Chigasaki, Kanagawa, Japan.
Global Zero Emission Research Center (GZR), National Institution of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.

Naoya Shibata (N)

Institute of Engineering Innovation, School of Engineering, The University of Tokyo, Tokyo, Japan.

Tsuyoshi Takata (T)

Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano-shi, Nagano, Japan.

Takashi Hisatomi (T)

Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano-shi, Nagano, Japan.

Kazunari Domen (K)

Office of University Professors, The University of Tokyo, Tokyo, Japan. domen@chemsys.t.u-tokyo.ac.jp.
Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano-shi, Nagano, Japan. domen@chemsys.t.u-tokyo.ac.jp.

Classifications MeSH