Structural Dissection of Viral Spike-Protein Binding of SARS-CoV-2 and SARS-CoV-1 to the Human Angiotensin-Converting Enzyme 2 (ACE2) as Cellular Receptor.
COVID-19
Receptor-Binding Domain (RBD)
SARS-CoV-1
SARS-CoV-2
binding interface
human ACE2
viral spike-protein
Journal
Biomedicines
ISSN: 2227-9059
Titre abrégé: Biomedicines
Pays: Switzerland
ID NLM: 101691304
Informations de publication
Date de publication:
18 Aug 2021
18 Aug 2021
Historique:
received:
23
07
2021
revised:
13
08
2021
accepted:
16
08
2021
entrez:
27
8
2021
pubmed:
28
8
2021
medline:
28
8
2021
Statut:
epublish
Résumé
An outbreak by a new severe acute respiratory syndrome betacoronavirus (SARS-CoV-2) has spread CoronaVirus Disease 2019 (COVID-19) all over the world. Immediately, following studies have confirmed the human Angiotensin-Converting Enzyme 2 (ACE2) as a cellular receptor of viral Spike-Protein (Sp) that mediates the CoV-2 invasion into the pulmonary host cells. Here, we compared the molecular interactions of the viral Sp from previous SARS-CoV-1 of 2002 and SARS-CoV-2 with the host ACE2 protein by in silico analysis of the available experimental structures of Sp-ACE2 complexes. The K417 amino acid residue, located in the region of Sp Receptor-Binding Domain (RBD) of the new coronavirus SARS-CoV-2, showed to have a key role for the binding to the ACE2 N-terminal region. The R426 residue of SARS-CoV-1 Sp-RBD also plays a key role, although by interacting with the central region of the ACE2 sequence. Therefore, our study evidenced peculiarities in the interactions of the two Sp-ACE2 complexes. Our outcomes were consistent with previously reported mutagenesis studies on SARS-CoV-1 and support the idea that a new and different RBD was acquired by SARS-CoV-2. These results have interesting implications and suggest further investigations.
Identifiants
pubmed: 34440241
pii: biomedicines9081038
doi: 10.3390/biomedicines9081038
pmc: PMC8394803
pii:
doi:
Types de publication
Journal Article
Langues
eng
Références
Viruses. 2020 Feb 25;12(3):
pubmed: 32106567
EMBO J. 2005 Apr 20;24(8):1634-43
pubmed: 15791205
Viruses. 2020 Feb 22;12(2):
pubmed: 32098422
J Mol Biol. 2007 Sep 21;372(3):774-97
pubmed: 17681537
Front Mol Biosci. 2020 Dec 09;7:591873
pubmed: 33363207
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W407-10
pubmed: 17517781
Sci China Life Sci. 2020 Mar;63(3):457-460
pubmed: 32009228
J Biol Chem. 2004 Apr 23;279(17):17996-8007
pubmed: 14754895
FEBS Open Bio. 2020 Nov;10(11):2363-2374
pubmed: 32970391
J Virol. 2010 Apr;84(7):3134-46
pubmed: 19906932
Science. 2020 Mar 13;367(6483):1260-1263
pubmed: 32075877
Emerg Microbes Infect. 2020 Dec;9(1):221-236
pubmed: 31987001
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
Cell. 2020 Apr 16;181(2):281-292.e6
pubmed: 32155444
Nature. 2003 Nov 27;426(6965):450-4
pubmed: 14647384
Protein Eng Des Sel. 2010 Feb;23(2):103-13
pubmed: 20008339
J Virol. 2020 Mar 17;94(7):
pubmed: 31996437
Viruses. 2020 Apr 10;12(4):
pubmed: 32290077
Lancet. 2003 Oct 25;362(9393):1353-8
pubmed: 14585636
Cells. 2020 Dec 08;9(12):
pubmed: 33302501
Pathogens. 2020 Mar 20;9(3):
pubmed: 32245083
Bioinformatics. 2011 Oct 15;27(20):2915-6
pubmed: 21873642
Science. 2005 Sep 16;309(5742):1864-8
pubmed: 16166518
Science. 2020 Mar 27;367(6485):1444-1448
pubmed: 32132184
N Engl J Med. 2020 Apr 16;382(16):1564-1567
pubmed: 32182409
PLoS Pathog. 2018 Aug 13;14(8):e1007236
pubmed: 30102747
Biomedicines. 2021 May 08;9(5):
pubmed: 34066729
Cell. 2020 Apr 16;181(2):271-280.e8
pubmed: 32142651
Nature. 2020 May;581(7807):215-220
pubmed: 32225176
Sci Rep. 2018 Oct 24;8(1):15701
pubmed: 30356097
Clin Transl Med. 2020 Feb 20;9(1):19
pubmed: 32078069
Biochem Biophys Res Commun. 2020 Jun 30;527(3):702-708
pubmed: 32410735
Nat Microbiol. 2020 Nov;5(11):1403-1407
pubmed: 32669681
Cell. 2020 May 14;181(4):894-904.e9
pubmed: 32275855
Nature. 2020 Mar;579(7798):265-269
pubmed: 32015508