Proteomic Analysis Reveals Key Proteins in Extracellular Vesicles Cargo Associated with Idiopathic Pulmonary Fibrosis In Vitro.
extracellular vesicles
fibroblasts
idiopathic pulmonary fibrosis
mass spectrometry
proteomic analysis
Journal
Biomedicines
ISSN: 2227-9059
Titre abrégé: Biomedicines
Pays: Switzerland
ID NLM: 101691304
Informations de publication
Date de publication:
20 Aug 2021
20 Aug 2021
Historique:
received:
13
07
2021
revised:
13
08
2021
accepted:
17
08
2021
entrez:
27
8
2021
pubmed:
28
8
2021
medline:
28
8
2021
Statut:
epublish
Résumé
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, irreversible, and highly fatal disease. It is characterized by the increased activation of both fibroblast and myofibroblast that results in excessive extracellular matrix (ECM) deposition. Extracellular vesicles (EVs) have been described as key mediators of intercellular communication in various pathologies. However, the role of EVs in the development of IPF remains poorly understood. This study aimed to characterize the differentially expressed proteins contained within EVs cargo derived from the fibroblast cell lines LL97A (IPF-1) and LL29 (IPF-2) isolated from lungs bearing IPF as compared to those derived from the fibroblast cell lines CCD8Lu (NL-1) and CCD19Lu (NL-2) isolated from healthy donors. Isolated EVs were subjected to label-free quantitative proteomic analysis by LC-MS/MS, and as a result, 331 proteins were identified. Differentially expressed proteins were obtained after the pairwise comparison, including all experimental groups. A total of 86 differentially expressed proteins were identified in either one or more comparison groups. Of note, proteins involved in fibrogenic processes, such as tenascin-c (TNC), insulin-like-growth-factor-binding protein 7 (IGFBP7), fibrillin-1 (FBN1), alpha-2 collagen chain (I) (COL1A2), alpha-1 collagen chain (I) (COL1A1), and lysyl oxidase homolog 1 (LOXL1), were identified in EVs cargo isolated from IPF cell lines. Additionally, KEGG pathway enrichment analysis revealed that differentially expressed proteins participate in focal adhesion, PI3K-Akt, and ECM-receptor interaction signaling pathways. In conclusion, our findings reveal that proteins contained within EVs cargo might play key roles during IPF pathogenesis.
Identifiants
pubmed: 34440261
pii: biomedicines9081058
doi: 10.3390/biomedicines9081058
pmc: PMC8394197
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : cb-2016-01 (No. 287162).
Organisme : Consejo Nacional de Ciencia y Tecnología
ID : No. 270189
Références
Biomed Res Int. 2019 Jun 11;2019:9712464
pubmed: 31309122
Matrix Biol Plus. 2019 Apr 13;1:100005
pubmed: 33543004
Mol Med Rep. 2016 Dec;14(6):5699-5706
pubmed: 27878273
Biochimie. 2018 Jul;150:110-130
pubmed: 29777737
BMC Pulm Med. 2014 Jul 26;14:120
pubmed: 25064447
PLoS One. 2017 Jan 25;12(1):e0170741
pubmed: 28122020
Nat Commun. 2016 Jun 03;7:11703
pubmed: 27256716
Clin Proteomics. 2019 Feb 6;16:6
pubmed: 30774578
JCI Insight. 2019 Aug 8;5:
pubmed: 31393853
Oncol Lett. 2020 Aug;20(2):1945-1951
pubmed: 32724439
J Proteomics. 2013 Jun 24;85:109-28
pubmed: 23659799
Respir Res. 2019 Oct 22;20(1):227
pubmed: 31640794
Lab Invest. 2004 Feb;84(2):203-12
pubmed: 14661032
J Biomed Biotechnol. 2010;2010:840518
pubmed: 19911078
Am J Respir Crit Care Med. 2018 Dec 15;198(12):1527-1538
pubmed: 30044642
J Am Board Fam Med. 2018 Jan-Feb;31(1):151-162
pubmed: 29330249
Lab Invest. 2016 Jul;96(7):773-83
pubmed: 27111286
Am J Respir Cell Mol Biol. 2016 Jun;54(6):751-60
pubmed: 26741177
Respir Res. 2018 Feb 22;19(1):32
pubmed: 29471816
BMC Bioinformatics. 2015 May 22;16:169
pubmed: 25994840
PLoS One. 2016 Mar 14;11(3):e0150897
pubmed: 26974954
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W478-83
pubmed: 22573175
World J Gastroenterol. 2009 Jul 14;15(26):3246-53
pubmed: 19598300
Sci Rep. 2017 Oct 27;7(1):14272
pubmed: 29079731
Int J Mol Sci. 2017 Nov 16;18(11):
pubmed: 29144435
Respir Res. 2006 Jun 15;7:88
pubmed: 16776827
Genome Biol. 2007;8(1):R3
pubmed: 17204154
Am J Respir Cell Mol Biol. 2019 Mar;60(3):279-288
pubmed: 30321056
Mol Med Rep. 2018 Feb;17(2):2107-2112
pubmed: 29207117
Sci Adv. 2021 Jan 27;7(5):
pubmed: 33571112
Clin Sci (Lond). 2014 Feb;126(4):275-88
pubmed: 23841699
Sci Rep. 2016 Jan 14;6:19276
pubmed: 26763945
Arthritis Rheum. 2011 Mar;63(3):783-94
pubmed: 21360508
Genome Res. 2003 Nov;13(11):2498-504
pubmed: 14597658
Arthritis Rheum. 2012 May;64(5):1653-64
pubmed: 22492165
Methods Mol Biol. 2018;1711:133-148
pubmed: 29344888
Med Sci Monit. 2018 Jun 17;24:4146-4153
pubmed: 29909421
Am J Physiol Lung Cell Mol Physiol. 2010 Dec;299(6):L785-93
pubmed: 20833777
J Drug Target. 2019 Aug;27(7):790-796
pubmed: 30457362
Mol Biol Cell. 2018 Sep 1;29(18):2165-2175
pubmed: 29995590
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W317-22
pubmed: 19465387
Respirology. 2019 Nov;24(11):1111-1114
pubmed: 31393655
Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613
pubmed: 30476243
Am J Physiol Cell Physiol. 2011 Mar;300(3):C550-6
pubmed: 21160034
Am J Respir Cell Mol Biol. 2018 Apr;58(4):461-470
pubmed: 29115860
Respirology. 2016 Apr;21(3):427-37
pubmed: 26595062
Cancer Manag Res. 2018 Nov 30;10:6581-6590
pubmed: 30555263
Respir Res. 2013 Aug 02;14:81
pubmed: 23915374
Nucleic Acids Res. 2017 Jan 4;45(D1):D362-D368
pubmed: 27924014
Dis Model Mech. 2017 Nov 1;10(11):1301-1312
pubmed: 29125826
Sci Rep. 2020 Jun 10;10(1):9378
pubmed: 32523095
Bioengineering (Basel). 2021 Jan 16;8(1):
pubmed: 33467161
Sci Rep. 2020 May 8;10(1):7787
pubmed: 32385381