Plasticity of the Injured Spinal Cord.


Journal

Cells
ISSN: 2073-4409
Titre abrégé: Cells
Pays: Switzerland
ID NLM: 101600052

Informations de publication

Date de publication:
26 07 2021
Historique:
received: 01 07 2021
revised: 21 07 2021
accepted: 23 07 2021
entrez: 27 8 2021
pubmed: 28 8 2021
medline: 16 11 2021
Statut: epublish

Résumé

Complete spinal cord injury (SCI) leads to permanent motor, sensitive and sensory deficits. In humans, there is currently no therapy to promote recovery and the only available treatments include surgical intervention to prevent further damage and symptomatic relief of pain and infections in the acute and chronic phases, respectively. Basically, the spinal cord is classically viewed as a nonregenerative tissue with limited plasticity. Thereby the establishment of the "glial" scar which appears within the SCI is mainly described as a hermetic barrier for axon regeneration. However, recent discoveries have shed new light on the intrinsic functional plasticity and endogenous recovery potential of the spinal cord. In this review, we will address the different aspects that the spinal cord plasticity can take on. Indeed, different experimental paradigms have demonstrated that axonal regrowth can occur even after complete SCI. Moreover, recent articles have demonstrated too that the "glial" scar is in fact composed of several cellular populations and that each of them exerts specific roles after SCI. These recent discoveries underline the underestimation of the plasticity of the spinal cord at cellular and molecular levels. Finally, we will address the modulation of this endogenous spinal cord plasticity and the perspectives of future therapeutic opportunities which can be offered by modulating the injured spinal cord microenvironment.

Identifiants

pubmed: 34440655
pii: cells10081886
doi: 10.3390/cells10081886
pmc: PMC8395000
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't Review

Langues

eng

Sous-ensembles de citation

IM

Références

Stem Cell Reports. 2019 May 14;12(5):1159-1177
pubmed: 31031189
Trends Genet. 2021 Jul;37(7):625-630
pubmed: 33879355
Brain. 2015 Jun;138(Pt 6):1583-97
pubmed: 25882650
Nat Neurosci. 2018 Apr;21(4):576-588
pubmed: 29556028
Exp Neurol. 2015 Mar;265:30-9
pubmed: 25541322
Dis Model Mech. 2016 Oct 1;9(10):1125-1137
pubmed: 27736748
Exp Neurol. 2014 Apr;254:109-20
pubmed: 24468477
J Neurosci Res. 2021 Jul;99(7):1835-1849
pubmed: 33960512
Eur J Neurosci. 2013 Sep;38(6):2946-61
pubmed: 23790207
Proc Natl Acad Sci U S A. 2018 Apr 17;115(16):4258-4263
pubmed: 29610299
World Neurosurg. 2014 Sep-Oct;82(3-4):e535-9
pubmed: 23298675
Cell Stem Cell. 2020 Feb 6;26(2):277-293.e8
pubmed: 32032526
Neurobiol Dis. 2015 Feb;74:114-25
pubmed: 25461258
Nat Biotechnol. 2021 Feb;39(2):149-153
pubmed: 33500565
Cell Death Dis. 2020 Jul 13;11(7):528
pubmed: 32661227
Lancet. 2011 Jun 4;377(9781):1938-47
pubmed: 21601270
Stem Cell Res Ther. 2021 Jan 6;12(1):10
pubmed: 33407795
Curr Biol. 2020 Dec 7;30(23):4665-4681.e6
pubmed: 33007251
Neurotherapeutics. 2020 Oct;17(4):2069-2088
pubmed: 32856173
J Neurosci. 2011 Jan 19;31(3):944-53
pubmed: 21248119
J Physiol. 2012 Aug 15;590(16):3647-63
pubmed: 22586214
Nature. 2011 Jul 13;475(7355):196-200
pubmed: 21753849
PLoS Biol. 2016 May 31;14(5):e1002468
pubmed: 27244556
Cell Stem Cell. 2010 Oct 8;7(4):470-82
pubmed: 20887953
Sci Rep. 2018 Jan 10;8(1):325
pubmed: 29321494
Cell Stem Cell. 2020 Sep 3;27(3):430-440.e5
pubmed: 32758426
J Neurotrauma. 2018 May 1;35(9):1049-1056
pubmed: 29316845
Science. 2016 Aug 26;353(6302):925-8
pubmed: 27471252
Cell. 2015 Nov 19;163(5):1191-1203
pubmed: 26590422
J Neurosci. 2005 Feb 2;25(5):1169-78
pubmed: 15689553
Exp Neurol. 2014 Oct;260:44-9
pubmed: 23376590
Sci Rep. 2020 Jul 2;10(1):10953
pubmed: 32616790
Cell. 2018 Mar 22;173(1):153-165.e22
pubmed: 29502968
Prog Neurobiol. 2012 Jul;98(1):16-37
pubmed: 22609046
J Exp Med. 2021 Aug 2;218(8):
pubmed: 34132743
J Neurotrauma. 2021 May 1;38(9):1292-1305
pubmed: 33446048
Neurosci Res. 2016 Dec;113:37-47
pubmed: 27497528
Ann Neurol. 2005 Nov;58(5):706-19
pubmed: 16173073
Spinal Cord. 2020 Oct;58(10):1049-1059
pubmed: 32576946
Nature. 2016 Apr 14;532(7598):195-200
pubmed: 27027288
PLoS Biol. 2008 Jul 22;6(7):e182
pubmed: 18651793
Nat Med. 2019 Jun;25(6):898-908
pubmed: 31160817
Arch Neurol. 1973 Jul;29(1):53-5
pubmed: 4711805
J Neurosci. 2013 Aug 21;33(34):13882-7
pubmed: 23966707
Eur Spine J. 2010 Nov;19(11):1815-23
pubmed: 20697750
Annu Rev Neurosci. 2008;31:195-218
pubmed: 18558853
Neurorehabil Neural Repair. 2018 Jun;32(6-7):578-589
pubmed: 29869587
J Neurosci. 2014 Oct 1;34(40):13399-410
pubmed: 25274818
Biomaterials. 2017 Sep;138:91-107
pubmed: 28554011
Cell. 2021 May 27;184(11):3056-3074.e21
pubmed: 33932339
World Neurosurg. 2021 May;149:e116-e127
pubmed: 33631390
Dev Cell. 2021 May 3;56(9):1326-1345.e6
pubmed: 33887203
J Neurosci. 2019 May 22;39(21):4066-4076
pubmed: 30902870
J Neurosci Res. 2002 Oct 1;70(1):65-81
pubmed: 12237865
Theranostics. 2020 Sep 14;10(25):11376-11403
pubmed: 33052221
EBioMedicine. 2016 Nov;13:55-65
pubmed: 27818039
Science. 2011 Jul 8;333(6039):238-42
pubmed: 21737741
Nat Commun. 2019 Jan 31;10(1):518
pubmed: 30705270
J Neurosci. 2008 Sep 17;28(38):9386-403
pubmed: 18799672
Nature. 2018 Sep;561(7723):396-400
pubmed: 30158698
Mol Ther. 2021 Aug 4;29(8):2483-2498
pubmed: 33895324

Auteurs

Nicolas Guérout (N)

EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH