Simulation and Experimental Study of Ion Concentration Polarization Induced Electroconvective Vortex and Particle Movement.
electroconvective vortex
ion concentration polarization
ion-permselective material
manipulation
Journal
Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903
Informations de publication
Date de publication:
29 Jul 2021
29 Jul 2021
Historique:
received:
29
06
2021
revised:
23
07
2021
accepted:
26
07
2021
entrez:
27
8
2021
pubmed:
28
8
2021
medline:
28
8
2021
Statut:
epublish
Résumé
Ion concentration polarization (ICP) has been widely applied in microfluidic systems in pre-concentration, particle separation, and desalination applications. General ICP microfluidic systems have three components (i.e., source, ion-exchange, and buffer), which allow selective ion transport. Recently developed trials to eliminate one of the three components to simplify the system have suffered from decreased performance by the accumulation of unwanted ions. In this paper, we presented a new ICP microfluidic system with only an ion-exchange membrane-coated channel. Numerical investigation on hydrodynamic flow and electric fields with a series of coupled governing equations enabled a strong correlation to experimental investigations on electroconvective vortices and the trajectory of charged particles. This study has significant implications for the development and optimization of ICP microfluidic and electrochemical systems for biomarker concentration and separation to improve sensing reliability and detection limits in analytic chemistry.
Identifiants
pubmed: 34442525
pii: mi12080903
doi: 10.3390/mi12080903
pmc: PMC8401646
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : National Research Foundation of Korea
ID : 2020R1A2B5B03002005
Organisme : Korea Evaluation Institute of Industrial Technology
ID : 20009125
Références
Sci Rep. 2017 Jul 11;7(1):5091
pubmed: 28698651
Lab Chip. 2015 Mar 21;15(6):1524-32
pubmed: 25631949
Angew Chem Int Ed Engl. 2013 Jul 29;52(31):8107-10
pubmed: 23784935
Anal Chem. 2010 Dec 15;82(24):9989-97
pubmed: 20964443
Chem Soc Rev. 2010 Mar;39(3):912-22
pubmed: 20179814
Analyst. 2013 Mar 7;138(5):1370-8
pubmed: 23293785
J Am Chem Soc. 2011 Jul 13;133(27):10368-71
pubmed: 21671557
Lab Chip. 2014 Aug 7;14(15):2778-82
pubmed: 24905601
Analyst. 2016 Nov 28;141(24):6510-6514
pubmed: 27840867
Lab Chip. 2008 Apr;8(4):625-8
pubmed: 18369520
Anal Chem. 2011 Oct 1;83(19):7348-55
pubmed: 21854051
Anal Chem. 2014 Aug 5;86(15):7360-7
pubmed: 25033014
Water Res. 2021 Aug 1;201:117351
pubmed: 34161873
Water Res. 2019 Aug 1;159:501-510
pubmed: 31129480
Lab Chip. 2008 Apr;8(4):596-601
pubmed: 18369515
Lab Chip. 2012 Nov 7;12(21):4472-82
pubmed: 22907316
Phys Rev Lett. 2013 Mar 15;110(11):114501
pubmed: 25166542
Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16240-16249
pubmed: 31358642
Phys Rev Lett. 2011 Sep 9;107(11):118301
pubmed: 22026706
Lab Chip. 2014 Feb 21;14(4):681-5
pubmed: 24327009
Nanoscale. 2018 Aug 16;10(32):15187-15194
pubmed: 29790562
Nat Nanotechnol. 2010 Apr;5(4):297-301
pubmed: 20305644
Nanoscale. 2014 May 7;6(9):4620-6
pubmed: 24637510
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):013024
pubmed: 24580337
Phys Rev Lett. 2007 Jul 27;99(4):044501
pubmed: 17678369
Sci Rep. 2013 Dec 19;3:3483
pubmed: 24352563