Workability and Flexural Properties of Fibre-Reinforced Geopolymer Using Different Mono and Hybrid Fibres.
deflection hardening
fibre-reinforced geopolymer mortar
flexural strength
residual strength factor
toughness index
Journal
Materials (Basel, Switzerland)
ISSN: 1996-1944
Titre abrégé: Materials (Basel)
Pays: Switzerland
ID NLM: 101555929
Informations de publication
Date de publication:
08 Aug 2021
08 Aug 2021
Historique:
received:
25
06
2021
revised:
31
07
2021
accepted:
04
08
2021
entrez:
27
8
2021
pubmed:
28
8
2021
medline:
28
8
2021
Statut:
epublish
Résumé
The effects of mono (single type) and hybrid (mixed types) fibres on the workability, compressive strength, flexural strength, and toughness parameters of fly ash geopolymer mortar were studied. The ratio of sand to geopolymer paste of the mortar was 2.75. It was found that workability of mortar decreased more with the use of PP fibres due to its higher dispersion into individual filaments in geopolymer mortar compared to the bundled ARG and PVA fibres. Compressive strength increased by 14% for using 1% steel with 0.5% PP fibres compared to that of the control mixture, which was 48 MPa. However, 25 to 30% decrease of compressive strength was observed in the mortars using the low-modulus fibres. Generally, flexural strength followed the trend of compressive strength. Deflection hardening behaviours in terms of the ASTM C1609 toughness indices, namely I5, I10 and I20 were exhibited by the mortars using 1% steel mono fibres, 0.5% ARG with 0.5% steel and 1% PVA with 0.5% steel hybrid fibres. The toughness indices and residual strength factors of the mortars using the other mono or hybrid fibres at 1 or 1.5% dosage were relatively low. Therefore, multiple cracking and deflection hardening behaviours could be achieved in fly ash geopolymer mortars of high sand to binder ratio by using steel fibres in mono or hybrid forms with ARG and PVA fibres.
Identifiants
pubmed: 34442971
pii: ma14164447
doi: 10.3390/ma14164447
pmc: PMC8402092
pii:
doi:
Types de publication
Journal Article
Langues
eng