Neutrophil azurophilic granule glycoproteins are distinctively decorated by atypical pauci- and phosphomannose glycans.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
26 08 2021
Historique:
received: 19 11 2020
accepted: 12 08 2021
entrez: 27 8 2021
pubmed: 28 8 2021
medline: 15 12 2021
Statut: epublish

Résumé

While neutrophils are critical first-responders of the immune system, they also cause tissue damage and act in a variety of autoimmune diseases. Many neutrophil proteins are N-glycosylated, a post-translational modification that may affect, among others, enzymatic activity, receptor interaction, and protein backbone accessibility. So far, a handful neutrophil proteins were reported to be decorated with atypical small glycans (paucimannose and smaller) and phosphomannosylated glycans. To elucidate the occurrence of these atypical glycoforms across the neutrophil proteome, we performed LC-MS/MS-based (glyco)proteomics of pooled neutrophils from healthy donors, obtaining site-specific N-glycan characterisation of >200 glycoproteins. We found that glycoproteins that are typically membrane-bound to be mostly decorated with high-mannose/complex N-glycans, while secreted proteins mainly harboured complex N-glycans. In contrast, proteins inferred to originate from azurophilic granules carried distinct and abundant paucimannosylation, asymmetric/hybrid glycans, and glycan phosphomannosylation. As these same proteins are often autoantigenic, uncovering their atypical glycosylation characteristics is an important step towards understanding autoimmune disease and improving treatment.

Identifiants

pubmed: 34446797
doi: 10.1038/s42003-021-02555-7
pii: 10.1038/s42003-021-02555-7
pmc: PMC8390755
doi:

Substances chimiques

Glycoproteins 0
Polysaccharides 0
Proteome 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1012

Informations de copyright

© 2021. The Author(s).

Références

Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182 (2006).
pubmed: 16498448 doi: 10.1038/nri1785
Lekstrom-Himes, J. A. & Gallin, J. I. Immunodeficiency diseases caused by defects in phagocytes. N. Engl. J. Med. 343, 1703–1714 (2000).
pubmed: 11106721 doi: 10.1056/NEJM200012073432307
Pillay, J. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116, 625–627 (2010).
pubmed: 20410504 doi: 10.1182/blood-2010-01-259028
Hickey, M. J. & Kubes, P. Intravascular immunity: the host–pathogen encounter in blood vessels. Nat. Rev. Immunol. 9, 364–375 (2009).
pubmed: 19390567 doi: 10.1038/nri2532
Rorvig, S., Ostergaard, O., Heegaard, N. H. & Borregaard, N. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane: correlation with transcriptome profiling of neutrophil precursors. J. Leukoc. Biol. 94, 711–721 (2013).
pubmed: 23650620 doi: 10.1189/jlb.1212619
Cieutat, A. M. et al. Azurophilic granules of human neutrophilic leukocytes are deficient in lysosome-associated membrane proteins but retain the mannose 6-phosphate recognition marker. Blood 91, 1044–1058 (1998).
pubmed: 9446668 doi: 10.1182/blood.V91.3.1044
Henson, P. M. & Johnston, R. B. Jr. Tissue injury in inflammation. Oxidants, proteinases, and cationic proteins. J. Clin. Investig. 79, 669–674 (1987).
pubmed: 3546374 pmcid: 424175 doi: 10.1172/JCI112869
Liu, J. et al. Advanced role of neutrophils in common respiratory diseases. J. Immunol. Res. 2017, 6710278 (2017).
pubmed: 28589151 pmcid: 5447318 doi: 10.1155/2017/6710278
Bossuyt, X. et al. Position paper: revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis. Nat. Rev. Rheumatol. 13, 683–692 (2017).
pubmed: 28905856 doi: 10.1038/nrrheum.2017.140
van der Geest, K. S. M. et al. Towards precision medicine in ANCA-associated vasculitis. Rheumatology 57, 1332–1339 (2018).
pubmed: 29045715 doi: 10.1093/rheumatology/kex367
Cornec, D., Cornec-Le Gall, E., Fervenza, F. C. & Specks, U. ANCA-associated vasculitis—clinical utility of using ANCA specificity to classify patients. Nat. Rev. Rheumatol. 12, 570–579 (2016).
pubmed: 27464484 doi: 10.1038/nrrheum.2016.123
Varki, A. et al. Essentials of Glycobiology, 3rd edn (Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY), 2015–2017).
Yu, J. T. et al. Deglycosylation of myeloperoxidase uncovers its novel antigenicity. Kidney Int. 91, 1410–1419 (2017).
pubmed: 28187981 doi: 10.1016/j.kint.2016.12.012
Falck, D. et al. Glycoforms of immunoglobulin G based biopharmaceuticals are differentially cleaved by trypsin due to the glycoform influence on higher-order structure. J. Proteome Res. 14, 4019–4028 (2015).
pubmed: 26244886 doi: 10.1021/acs.jproteome.5b00573
Specks, U. et al. Functional significance of Asn-linked glycosylation of proteinase 3 for enzymatic activity, processing, targeting, and recognition by anti-neutrophil cytoplasmic antibodies. J. Biochem. 141, 101–112 (2007).
pubmed: 17158864 doi: 10.1093/jb/mvm008
Babu, P. et al. Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology. Glycoconj. J. 26, 975–986 (2009).
pubmed: 18587645 doi: 10.1007/s10719-008-9146-4
Venkatakrishnan, V. et al. Glycan analysis of human neutrophil granules implicates a maturation-dependent glycosylation machinery. J. Biol. Chem. 295, 12648–12660 (2020).
pubmed: 32665399 doi: 10.1074/jbc.RA120.014011
Loke, I., Ostergaard, O., Heegaard, N. H. H., Packer, N. H. & Thaysen-Andersen, M. Paucimannose-Rich N-glycosylation of spatiotemporally regulated human neutrophil elastase modulates its immune functions. Mol. Cell Proteom. 16, 1507–1527 (2017).
doi: 10.1074/mcp.M116.066746
Loke, I., Packer, N. H. & Thaysen-Andersen, M. Complementary LC–MS/MS-based N-glycan, N-glycopeptide, and intact N-glycoprotein profiling reveals unconventional Asn71-glycosylation of human neutrophil cathepsin G. Biomolecules 5, 1832–1854 (2015).
pubmed: 26274980 pmcid: 4598777 doi: 10.3390/biom5031832
Zoega, M., Ravnsborg, T., Hojrup, P., Houen, G. & Schou, C. Proteinase 3 carries small unusual carbohydrates and associates with alphalpha-defensins. J. Proteom. 75, 1472–1485 (2012).
doi: 10.1016/j.jprot.2011.11.019
Thaysen-Andersen, M. et al. Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J. Biol. Chem. 290, 8789–8802 (2015).
pubmed: 25645918 pmcid: 4423670 doi: 10.1074/jbc.M114.631622
Ugonotti, J., Chatterjee, S. & Thaysen-Andersen, M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol. Asp. Med. https://doi.org/10.1016/j.mam.2020.100882 (2020).
doi: 10.1016/j.mam.2020.100882
Tjondro, H. C., Loke, I., Chatterjee, S. & Thaysen-Andersen, M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol. Rev. Camb. Philos. Soc. 94, 2068–2100 (2019).
pubmed: 31410980 doi: 10.1111/brv.12548
Reiding, K. R. et al. Neutrophil myeloperoxidase harbors distinct site-specific peculiarities in its glycosylation. J. Biol. Chem. 294, 20233–20245 (2019).
pubmed: 31719144 pmcid: 6937560 doi: 10.1074/jbc.RA119.011098
Tjondro, H. C. et al. Hyper-truncated Asn355- and Asn391-glycans modulate the activity of neutrophil granule myeloperoxidase. J. Biol. Chem. 296, 100144 (2021).
pubmed: 33273015 doi: 10.1074/jbc.RA120.016342
Reiding, K. R., Bondt, A., Franc, V. & Heck, A. J. R. The benefits of hybrid fragmentation methods for glycoproteomics. Trac-Trend Anal. Chem. 108, 260–268 (2018).
doi: 10.1016/j.trac.2018.09.007
Caval, T. et al. Targeted analysis of lysosomal directed proteins and their sites of mannose-6-phosphate modification. Mol. Cell. Proteom. 18, 16–27 (2019).
doi: 10.1074/mcp.RA118.000967
Caval, T., Zhu, J. & Heck, A. J. R. Simply extending the mass range in electron transfer higher energy collisional dissociation increases confidence in N-glycopeptide identification. Anal. Chem. 91, 10401–10406 (2019).
pubmed: 31287300 pmcid: 6706795 doi: 10.1021/acs.analchem.9b02125
Grabowski, P. et al. Proteome analysis of human neutrophil granulocytes from patients with monogenic disease using data-independent acquisition. Mol. Cell. Proteom. 18, 760–772 (2019).
doi: 10.1074/mcp.RA118.001141
Rieckmann, J. C. et al. Social network architecture of human immune cells unveiled by quantitative proteomics. Nat. Immunol. 18, 583–593 (2017).
pubmed: 28263321 doi: 10.1038/ni.3693
Raijmakers, R., Heck, A. J. & Mohammed, S. Assessing biological variation and protein processing in primary human leukocytes by automated multiplex stable isotope labeling coupled to 2 dimensional peptide separation. Mol. Biosyst. 5, 992–1003 (2009).
pubmed: 19668865 doi: 10.1039/b901873e
Kistowski, M. et al. A strong neutrophil elastase proteolytic fingerprint marks the carcinoma tumor proteome. Mol. Cell Proteom. 16, 213–227 (2017).
doi: 10.1074/mcp.M116.058818
Bern, M., Kil, Y. J. & Becker, C. Byonic: advanced peptide and protein identification software. Curr. Protoc. Bioinform. Chapter 13, Unit 13, 20 (2012).
Nairn, A. V. et al. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J. Biol. Chem. 283, 17298–17313 (2008).
pubmed: 18411279 pmcid: 2427342 doi: 10.1074/jbc.M801964200
Riley, N. M., Hebert, A. S., Westphall, M. S. & Coon, J. J. Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat. Commun. 10, 1311 (2019).
pubmed: 30899004 pmcid: 6428843 doi: 10.1038/s41467-019-09222-w
Caval, T., Heck, A. J. R. & Reiding, K. R. Meta-heterogeneity: evaluating and describing the diversity in glycosylation between sites on the same glycoprotein. Mol. Cell. Proteom. https://doi.org/10.1074/mcp.R120.002093 (2020).
van Berkel, P. H., van Veen, H. A., Geerts, M. E., de Boer, H. A. & Nuijens, J. H. Heterogeneity in utilization of N-glycosylation sites Asn624 and Asn138 in human lactoferrin: a study with glycosylation-site mutants. Biochem. J. 319, 117–122 (1996).
pubmed: 8870657 pmcid: 1217743 doi: 10.1042/bj3190117
Zhu, J. et al. Quantitative longitudinal inventory of the N-glycoproteome of human milk from a single donor reveals the highly variable repertoire and dynamic site-specific changes. J. Proteome Res. https://doi.org/10.1021/acs.jproteome.9b00753 (2020).
Stadlmann, J. et al. Comparative glycoproteomics of stem cells identifies new players in ricin toxicity. Nature 549, 538–542, (2017).
pubmed: 28959962 pmcid: 6003595 doi: 10.1038/nature24015
Ruhaak, L. R., Xu, G., Li, Q., Goonatilleke, E. & Lebrilla, C. B. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem. Rev. 118, 7886–7930 (2018).
pubmed: 29553244 pmcid: 7757723 doi: 10.1021/acs.chemrev.7b00732
Gaunitz, S., Nagy, G., Pohl, N. L. & Novotny, M. V. Recent advances in the analysis of complex glycoproteins. Anal. Chem. 89, 389–413 (2017).
pubmed: 28105826 doi: 10.1021/acs.analchem.6b04343
Lee, W. C. & Lee, K. H. Applications of affinity chromatography in proteomics. Anal. Biochem. 324, 1–10 (2004).
pubmed: 14654038 doi: 10.1016/j.ab.2003.08.031
Yang, Y. et al. Hybrid mass spectrometry approaches in glycoprotein analysis and their usage in scoring biosimilarity. Nat. Commun. 7, 13397 (2016).
pubmed: 27824045 pmcid: 5105167 doi: 10.1038/ncomms13397
Nakayama, F. et al. CD15 expression in mature granulocytes is determined by alpha 1,3-fucosyltransferase IX, but in promyelocytes and monocytes by alpha 1,3-fucosyltransferase IV. J. Biol. Chem. 276, 16100–16106 (2001).
pubmed: 11278338 doi: 10.1074/jbc.M007272200
Evrard, M. et al. Developmental analysis of bone marrow neutrophils reveals populations specialized in expansion, trafficking, and effector functions. Immunity 48, 364–379 e368 (2018).
pubmed: 29466759 doi: 10.1016/j.immuni.2018.02.002
Varki, A. Selectin ligands. Proc. Natl Acad. Sci. USA 91, 7390–7397 (1994).
pubmed: 7519775 pmcid: 44407 doi: 10.1073/pnas.91.16.7390
Graham, S. A. et al. Identification of neutrophil granule glycoproteins as Lewis(x)-containing ligands cleared by the scavenger receptor C-type lectin. J. Biol. Chem. 286, 24336–24349 (2011).
pubmed: 21561871 pmcid: 3129213 doi: 10.1074/jbc.M111.244772
Aplin, A. E., Howe, A., Alahari, S. K. & Juliano, R. L. Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharm. Rev. 50, 197–263 (1998).
pubmed: 9647866
Clerc, F. et al. Human plasma protein N-glycosylation. Glycoconj. J. 33, 309–343 (2016).
pubmed: 26555091 doi: 10.1007/s10719-015-9626-2
Totten, S. M., Feasley, C. L., Bermudez, A. & Pitteri, S. J. Parallel comparison of N-linked glycopeptide enrichment techniques reveals extensive glycoproteomic analysis of plasma enabled by SAX-ERLIC. J. Proteome Res. 16, 1249–1260 (2017).
pubmed: 28199111 doi: 10.1021/acs.jproteome.6b00849
Kolarich, D., Weber, A., Turecek, P. L., Schwarz, H. P. & Altmann, F. Comprehensive glyco-proteomic analysis of human alpha1-antitrypsin and its charge isoforms. Proteomics 6, 3369–3380 (2006).
pubmed: 16622833 doi: 10.1002/pmic.200500751
Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).
pubmed: 27558841 doi: 10.1093/glycob/cww086
Dahms, N. M., Lobel, P. & Kornfeld, S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J. Biol. Chem. 264, 12115–12118 (1989).
pubmed: 2545698 doi: 10.1016/S0021-9258(18)63825-6
Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nat. Rev. Mol. Cell Biol. 4, 202–212 (2003).
pubmed: 12612639 doi: 10.1038/nrm1050
Le Cabec, V., Cowland, J. B., Calafat, J. & Borregaard, N. Targeting of proteins to granule subsets is determined by timing and not by sorting: The specific granule protein NGAL is localized to azurophil granules when expressed in HL-60 cells. Proc. Natl Acad. Sci. USA 93, 6454–6457 (1996).
pubmed: 8692836 pmcid: 39044 doi: 10.1073/pnas.93.13.6454
Pohlmann, R. et al. Mannose 6-phosphate specific receptors: structure and function. Biochem. Soc. Trans. 17, 15–16 (1989).
pubmed: 2541033 doi: 10.1042/bst0170015
Varki, A. et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 25, 1323–1324 (2015).
pubmed: 26543186 pmcid: 4643639 doi: 10.1093/glycob/cwv091
Ceroni, A. et al. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J. Proteome Res. 7, 1650–1659 (2008).
pubmed: 18311910 doi: 10.1021/pr7008252
Kirschner, K. N. et al. GLYCAM06: a generalizable biomolecular force field. Carbohydr. J. Comput. Chem. 29, 622–655 (2008).
doi: 10.1002/jcc.20820

Auteurs

Karli R Reiding (KR)

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands. k.r.reiding@uu.nl.
Netherlands Proteomics Center, Utrecht, The Netherlands. k.r.reiding@uu.nl.

Yu-Hsien Lin (YH)

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
Netherlands Proteomics Center, Utrecht, The Netherlands.

Floris P J van Alphen (FPJ)

Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands.

Alexander B Meijer (AB)

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands.
Department of Molecular and Cellular Hemostasis, Sanquin Research, Amsterdam, The Netherlands.

Albert J R Heck (AJR)

Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, The Netherlands. a.j.r.heck@uu.nl.
Netherlands Proteomics Center, Utrecht, The Netherlands. a.j.r.heck@uu.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH