Dynamical Modeling as a Tool for Inferring Causation.
agent-based modeling
causal inference
dynamical modeling
mechanistic modeling
statistics
Journal
American journal of epidemiology
ISSN: 1476-6256
Titre abrégé: Am J Epidemiol
Pays: United States
ID NLM: 7910653
Informations de publication
Date de publication:
01 01 2022
01 01 2022
Historique:
received:
24
03
2021
revised:
16
08
2021
accepted:
18
08
2021
pubmed:
28
8
2021
medline:
11
2
2022
entrez:
27
8
2021
Statut:
ppublish
Résumé
Dynamical models, commonly used in infectious disease epidemiology, are formal mathematical representations of time-changing systems or processes. For many chronic disease epidemiologists, the link between dynamical models and predominant causal inference paradigms is unclear. In this commentary, we explain the use of dynamical models for representing causal systems and the relevance of dynamical models for causal inference. In certain simple settings, dynamical modeling and conventional statistical methods (e.g., regression-based methods) are equivalent, but dynamical modeling has advantages over conventional statistical methods for many causal inference problems. Dynamical models can be used to transparently encode complex biological knowledge, interference and spillover, effect modification, and variables that influence each other in continuous time. As our knowledge of biological and social systems and access to computational resources increases, there will be growing utility for a variety of mathematical modeling tools in epidemiology.
Identifiants
pubmed: 34447984
pii: 6358337
doi: 10.1093/aje/kwab222
pmc: PMC8897986
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
1-6Subventions
Organisme : NIA NIH HHS
ID : R01 AG057869
Pays : United States
Informations de copyright
© The Author(s) 2021. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Références
Am J Epidemiol. 2015 Jan 15;181(2):100-2
pubmed: 25480822
J Am Stat Assoc. 2008 Jun;103(482):832-842
pubmed: 19081744
Am J Epidemiol. 2017 Jul 15;186(2):131-142
pubmed: 28838064
J R Stat Soc Ser A Stat Soc. 2012 Oct;175(4):831-861
pubmed: 23193356
Curr Epidemiol Rep. 2016 Dec;3(4):297-305
pubmed: 28133589
JAMA Netw Open. 2020 Dec 1;3(12):e2031756
pubmed: 33315116
Am J Epidemiol. 1986 Mar;123(3):392-402
pubmed: 3946386
Comput Math Methods Med. 2017;2017:8613878
pubmed: 28900467
Nat Rev Neurosci. 2018 Nov;19(11):701-710
pubmed: 30305711
Emerg Themes Epidemiol. 2012 Mar 19;9(1):1
pubmed: 22429606
PLoS Negl Trop Dis. 2015 Mar 27;9(3):e0003682
pubmed: 25815466
J R Soc Interface. 2020 Jun;17(167):20190675
pubmed: 32574536
SSM Popul Health. 2019 Dec 09;10:100526
pubmed: 31890846
PLoS Med. 2005 Jul;2(7):e174
pubmed: 16013892
Math Biosci. 2015 May;263:121-32
pubmed: 25726716
Epidemiology. 1999 Jan;10(1):37-48
pubmed: 9888278
Vopr Virusol. 1993 Mar-Apr;38(2):59-63
pubmed: 8059521
PLoS One. 2018 Jan 29;13(1):e0190615
pubmed: 29377891
Nature. 1976 Jun 10;261(5560):459-67
pubmed: 934280
J Epidemiol Community Health. 2020 Nov 10;:
pubmed: 33172839
Int J Epidemiol. 2017 Apr 1;46(2):756-762
pubmed: 28039382
Clin Infect Dis. 2018 Apr 3;66(8):1270-1275
pubmed: 29228134
Am J Epidemiol. 2002 Jan 15;155(2):176-84
pubmed: 11790682
Am J Public Health. 2018 May;108(5):616-619
pubmed: 29565659
Prog Biophys Mol Biol. 2011 May;105(3):247-57
pubmed: 21078337
BMC Med. 2017 Dec 29;15(1):223
pubmed: 29287587
Int J Epidemiol. 2004 Jun;33(3):477-84
pubmed: 15020565
Epidemiol Methods. 2017 Dec;6(1):
pubmed: 30555771