Cloning, expression, and characteristic analysis of the novel β-galactosidase from silkworm, Bombyx mori.
Bombyx mori
prokaryotic and eukaryotic expression
temporal-spatial expression pattern
β-galactosidase
Journal
Genesis (New York, N.Y. : 2000)
ISSN: 1526-968X
Titre abrégé: Genesis
Pays: United States
ID NLM: 100931242
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
revised:
16
08
2021
received:
23
06
2021
accepted:
18
08
2021
pubmed:
28
8
2021
medline:
15
2
2022
entrez:
27
8
2021
Statut:
ppublish
Résumé
β-Galactosidase is a critical exoglycosidase involved in the hydrolysis of lactose, the modification and degradation of glycoprotein in vivo. In this study, the β-galactosidase gene of silkworm (BmGal), whose cDNA comprises 11 exons and contains an intact ORF of 1,821 bp, was cloned. The protein sequence of BmGal showed high similarity with other known insect β-galactosidases. No activity of the BmGal expressed in Escherichia coli or Pichia pastoris was detected while it was successfully expressed with high enzyme activity in baculovirus expression system in silkworm, and the electrophoresis result revealed that the BmGal showed activity in oligomer mode. Enzyme activity assay showed that its optimum pH was 8.4 and its optimum temperature was 40 °C. What is more, we found that iron ions can stimulate the activity of the enzyme while cobalt, nickel, or lead ions can inhibit its activity significantly. Besides, the temporal-spatial transcription pattern of the BmGal mRNA level was analyzed, which showed that BmGal was transcribed at the highest level in the fifth larval instar but relatively low level in the pupal and adult stage, and the highest transcriptional level of BmGal was found in testis among all the tissues concerned.
Substances chimiques
Insect Proteins
0
beta-Galactosidase
EC 3.2.1.23
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e23446Informations de copyright
© 2021 Wiley Periodicals LLC.
Références
Best-Belpomme, M., Courgeon, A. M., & Rambach, A. (1978). Beta-galactosidase is induced by hormone in Drosophila melanogaster cell cultures. Proceedings of the National Academy of Sciences of the United States of America, 75(12), 6102-6106. https://doi.org/10.1073/pnas.75.12.6102
Byeon, G. M., Lee, K. S., Gui, Z. Z., Kim, I., Kang, P. D., Lee, S. M., … Jin, B. R. (2005). A digestive beta-glucosidase from the silkworm, Bombyx mori: cDNA cloning, expression and enzymatic characterization. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 141(4), 418-427. https://doi.org/10.1016/j.cbpc.2005.05.001
Cardoso, B. B., Silverio, S. C., Abrunhosa, L., Teixeira, J. A., & Rodrigues, L. R. (2017). Beta-galactosidase from Aspergillus lacticoffeatus: A promising biocatalyst for the synthesis of novel prebiotics. International Journal of Food Microbiology, 257, 67-74. https://doi.org/10.1016/j.ijfoodmicro.2017.06.013
Carneiro, L., Yu, L., Dupree, P., & Ward, R. J. (2018). Characterization of a beta-galactosidase from Bacillus subtilis with transgalactosylation activity. International Journal of Biological Macromolecules, 120, 279-287. https://doi.org/10.1016/j.ijbiomac.2018.07.116
Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America, 92(20), 9363-9367. https://doi.org/10.1073/pnas.92.20.9363
Ferreira, A. H., Terra, W. R., & Ferreira, C. (2003). Characterization of a beta-glycosidase highly active on disaccharides and of a beta-galactosidase from Tenebrio molitor midgut lumen. Insect Biochemistry and Molecular Biology, 33(2), 253-265. https://doi.org/10.1016/s0965-1748(02)00239-4
Heid, C. A., Stevens, J., Livak, K. J., & Williams, P. M. (1996). Real time quantitative PCR. Genome Research, 6(10), 986-994. https://doi.org/10.1101/gr.6.10.986
Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal, 280, 309-316. https://doi.org/10.1042/bj2800309
Hildebrandt, P., Wanarska, M., & Kur, J. (2009). A new cold-adapted beta-D-galactosidase from the Antarctic Arthrobacter sp. 32c - gene cloning, overexpression, purification and properties. BMC Microbiology, 9, 151. https://doi.org/10.1186/1471-2180-9-151
Husain, Q. (2010). Beta galactosidases and their potential applications: A review. Critical Reviews in Biotechnology, 30(1), 41-62. https://doi.org/10.3109/07388550903330497
Juers, D. H., Matthews, B. W., & Huber, R. E. (2012). LacZ beta-galactosidase: Structure and function of an enzyme of historical and molecular biological importance. Protein Science, 21(12), 1792-1807. https://doi.org/10.1002/pro.2165
Knipple, D. C., & MacIntyre, R. J. (1984). Cytogenic mapping and isolation of mutations of the beta-Gal-1 locus of Drosophila melanogaster. Molecular & General Genetics, 198(2), 75-83. https://doi.org/10.1007/BF00328704
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054
Li, D., Li, S., Wu, Y., Jin, M., Zhou, Y., Wang, Y., … Han, Y. (2020). Cloning and characterization of a new beta-galactosidase from Alteromonas sp. QD01 and its potential in synthesis of galacto-oligosaccharides. Marine Drugs, 18(6), 312. https://doi.org/10.3390/md18060312
Li, Q., Hu, W., Liu, W. X., Zhao, L. Y., Huang, D., Liu, X. D., … Wu, W. K. K. (2021). Streptococcus thermophilus inhibits colorectal tumorigenesis through secreting beta-galactosidase. Gastroenterology, 160(4), 1179-1193. https://doi.org/10.1053/j.gastro.2020.09.003
Li, S., Zhu, X., & Xing, M. (2019). A new beta-galactosidase from the Antarctic bacterium Alteromonas sp. ANT48 and its potential in formation of prebiotic Galacto-oligosaccharides. Marine Drugs, 17(11), 599. https://doi.org/10.3390/md17110599
Li, Y., Wang, G., Tian, J., Liu, H., Yang, H., Yi, Y., … Zhang, Z. (2012). Transcriptome analysis of the silkworm (Bombyx mori) by high-throughput RNA sequencing. PLoS One, 7(8), e43713. https://doi.org/10.1371/journal.pone.0043713
Liu, P., Xie, J., Liu, J., & Ouyang, J. (2019). A novel thermostable beta-galactosidase from Bacillus coagulans with excellent hydrolysis ability for lactose in whey. Journal of Dairy Science, 102(11), 9740-9748. https://doi.org/10.3168/jds.2019-16654
Liu, X., Wei, Y., Li, Y., Li, H., Yang, X., Yi, Y., & Zhang, Z. (2016). A highly efficient and simple construction strategy for producing recombinant Baculovirus Bombyx mori Nucleopolyhedrovirus. PLoS One, 11(3), e0152140. https://doi.org/10.1371/journal.pone.0152140
Liu, X., Yang, X., Mehboob, A., Hu, X., Yi, Y., Li, Y., & Zhang, Z. (2020). A construction strategy for a baculovirus-silkworm multigene expression system and its application for coexpression of type I and type II interferons. Microbiology, 9(3), e979. https://doi.org/10.1002/mbo3.979
Liu, Y., Wu, Z., Zeng, X., Weng, P., Zhang, X., & Wang, C. (2021). A novel cold-adapted phospho-beta-galactosidase from bacillus velezensis and its potential application for lactose hydrolysis in milk. International Journal of Biological Macromolecules, 166, 760-770. https://doi.org/10.1016/j.ijbiomac.2020.10.233
Matthews, B. W. (2005). The structure of E. coli beta-galactosidase. Comptes Rendus Biologies, 328(6), 549-556. https://doi.org/10.1016/j.crvi.2005.03.006
Miguez Amil, S., Jimenez-Ortega, E., Ramirez-Escudero, M., Talens-Perales, D., Marin-Navarro, J., Polaina, J., … Fernandez-Leiro, R. (2020). The cryo-EM structure of Thermotoga maritima beta-galactosidase: Quaternary structure guides protein engineering. ACS Chemical Biology, 15(1), 179-188. https://doi.org/10.1021/acschembio.9b00752
Ngernyuang, N., Kobayashi, I., Promboon, A., Ratanapo, S., Tamura, T., & Ngernsiri, L. (2011). Cloning and expression analysis of the Bombyx mori alpha-amylase gene (Amy) from the indigenous Thai silkworm strain, Nanglai. Journal of Insect Science, 11, 38. https://doi.org/10.1673/031.011.0138
Nguyen, T. H., Splechtna, B., Steinbock, M., Kneifel, W., Lettner, H. P., Kulbe, K. D., & Haltrich, D. (2006). Purification and characterization of two novel beta-galactosidases from lactobacillus reuteri. Journal of Agricultural and Food Chemistry, 54(14), 4989-4998. https://doi.org/10.1021/jf053126u
Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nature Methods, 8(10), 785-786. https://doi.org/10.1038/nmeth.1701
Schnetzer, J. W., & Tyler, M. S. (1996). Endogenous beta-galactosidase activity in the larval, pupal, and adult stages of the fruit fly, Drosophila melanogaster, indicates need for caution in lacZ fusion-gene studies. The Biological Bulletin, 190(2), 173-187. https://doi.org/10.2307/1542537
Sharma, S. K., & Leblanc, R. M. (2017). Biosensors based on beta-galactosidase enzyme: Recent advances and perspectives. Analytical Biochemistry, 535, 1-11. https://doi.org/10.1016/j.ab.2017.07.019
Su, Z., Gao, J., Xie, Q., Wang, Y., & Li, Y. (2020). Possible role of beta-galactosidase in rheumatoid arthritis. Modern Rheumatology, 30(4), 671-680. https://doi.org/10.1080/14397595.2019.1640175
Sun, J., Yao, C., Wang, W., Zhuang, Z., Liu, J., Dai, F., & Hao, J. (2018). Cloning, expression and characterization of a novel cold-adapted beta-galactosidase from the deep-sea bacterium Alteromonas sp. ML52. Marine Drugs, 16(12), 469. https://doi.org/10.3390/md16120469
Tomizawa, M., Tsumaki, K., & Sone, M. (2016). Characterization of the activity of beta-galactosidase from Escherichia coli and Drosophila melanogaster in fixed and non-fixed drosophila tissues. Biochimie Open, 3, 1-7. https://doi.org/10.1016/j.biopen.2016.06.001
Wang, J., Xia, Q., He, X., Dai, M., Ruan, J., Chen, J., … Yu, J. (2005). SilkDB: A knowledgebase for silkworm biology and genomics. Nucleic Acids Research, 33, D399-D402. https://doi.org/10.1093/nar/gki116
Xia, Q., Guo, Y., Zhang, Z., Li, D., Xuan, Z., Li, Z., … Wang, J. (2009). Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx). Science, 326(5951), 433-436. https://doi.org/10.1126/science.1176620
Xia, Y., He, L., Mao, J., Fang, P., Ma, X., & Wang, Z. (2018). Purification, characterization, and gene cloning of a new cold-adapted beta-galactosidase from Erwinia sp. E602 isolated in Northeast China. Journal of Dairy Science, 101(8), 6946-6954. https://doi.org/10.3168/jds.2018-14605
Yang, X., Liu, Z., Jiang, C., Sun, J., Xue, C., & Mao, X. (2018). A novel agaro-oligosaccharide-lytic beta-galactosidase from Agarivorans gilvus WH0801. Applied Microbiology and Biotechnology, 102(12), 5165-5172. https://doi.org/10.1007/s00253-018-8999-0