New wine in old bottles: current progress on P5 ATPases.

P5 ATPases endoplasmic reticulum mitochondria quality control topogenesis translocation

Journal

The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646

Informations de publication

Date de publication:
12 2022
Historique:
revised: 19 07 2021
received: 05 04 2021
accepted: 26 08 2021
pubmed: 28 8 2021
medline: 15 12 2022
entrez: 27 8 2021
Statut: ppublish

Résumé

P5 ATPases are evolutionarily conserved P-type transporters. Despite their important roles in the endoplasmic reticulum (ER) and in lysosomes, the substrate specificities and transporting mechanisms of P5 ATPases have remained mysterious. Recently, several studies have provided genetic, biochemical, and structural evidence to help elucidate the physiological functions and substrates of P5 ATPases. Here, we summarize this progress and discuss the potential transport mechanisms of the P5 ATPases-in particular, P5A ATPase-for further study.

Identifiants

pubmed: 34449980
doi: 10.1111/febs.16172
doi:

Substances chimiques

Adenosine Triphosphatases EC 3.6.1.-

Types de publication

Journal Article Review Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7304-7313

Informations de copyright

© 2021 Federation of European Biochemical Societies.

Références

Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5, 282-295.
Palmgren MG & Nissen P (2011) P-type ATPases. Annu Rev Biophys 40, 243-266.
Sørensen DM, Holen HW, Holemans T, Vangheluwe P & Palmgren MG (2015) Towards defining the substrate of orphan P5A-ATPases. Biochim Biophys Acta 1850, 524-535.
Pedersen BP, Ifrim G, Liboriussen P, Axelsen KB, Palmgren MG, Nissen P, Wiuf C & Pedersen CN (2014) Large scale identification and categorization of protein sequences using structured logistic regression. PLoS One 9, e85139.
Axelsen KB & Palmgren MG (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46, 84-101.
Lopez-Marques RL, Theorin L, Palmgren MG & Pomorski TG (2014) P4-ATPases: lipid flippases in cell membranes. Pflugers Arch 466, 1227-1240.
Dyla M, Kjaergaard M, Poulsen H & Nissen P (2020) Structure and Mechanism of P-Type ATPase Ion Pumps. Annu Rev Biochem 89, 583-603.
Sørensen DM, Buch-Pedersen MJ & Palmgren MG (2010) Structural divergence between the two subgroups of P5 ATPases. Biochim Biophys Acta 1797, 846-855.
Sørensen DM, Holemans T, van Veen S, Martin S, Arslan T, Haagendahl IW, Holen HW, Hamouda NN, Eggermont J, Palmgren M et al. (2018) Parkinson disease related ATP13A2 evolved early in animal evolution. PLoS One 13, e0193228.
Li P, Wang K, Salustros N, Gronberg C & Gourdon P (2021) Structure and transport mechanism of P5B-ATPases. Nat Commun 12, 3973.
Moller AB, Asp T, Holm PB & Palmgren MG (2008) Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps. Mol Phylogenet Evol 46, 619-634.
Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J et al. (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38, 1184-1191.
Di Fonzo A, Chien HF, Socal M, Giraudo S, Tassorelli C, Iliceto G, Fabbrini G, Marconi R, Fincati E, Abbruzzese G et al. (2007) ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68, 1557-1562.
Santoro L, Breedveld GJ, Manganelli F, Iodice R, Pisciotta C, Nolano M, Punzo F, Quarantelli M, Pappata S, Di Fonzo A et al. (2011) Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12, 33-39.
Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, Andreeva A, Reichbauer J, De Rycke R, Chang DI et al. (2017) Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 140, 287-305.
Farias FHG, Zeng R, Johnson GS, Wininger FA, Taylor JF, Schnabel RD, McKay SD, Sanders DN, Lohi H, Seppälä EH et al. (2011) A truncating mutation in ATP13A2 is responsible for adult-onset neuronal ceroid lipofuscinosis in Tibetan terriers. Neurobiol Dis 42, 468-474.
Vashist S, Frank CG, Jakob CA & Ng DT (2002) Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol Biol Cell 13, 3955-3966.
Cronin SR, Rao R & Hampton RY (2002) Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J Cell Biol 157, 1017-1028.
Suzuki C (2001) Immunochemical and mutational analyses of P-type ATPase Spf1p involved in the yeast secretory pathway. Biosci Biotechnol Biochem 65, 2405-2411.
Feng Z, Zhao Y, Li T, Nie W, Yang X, Wang X, Wu J, Liao J & Zou Y (2020) CATP-8/P5A ATPase regulates ER processing of the DMA-1 receptor for dendritic branching. Cell Rep 32, 108101.
Gitler AD, Chesi A, Geddie ML, Strathearn KE, Hamamichi S, Hill KJ, Caldwell KA, Caldwell GA, Cooper AA, Rochet JC et al. (2009) Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat Genet 41, 308-315.
Schmidt K, Wolfe DM, Stiller B & Pearce DA (2009) Cd2+, Mn2+, Ni2+ and Se2+ toxicity to Saccharomyces cerevisiae lacking YPK9p the orthologue of human ATP13A2. Biochem Biophys Res Commun 383, 198-202.
Zielich J, Tzima E, Schroder EA, Jemel F, Conradt B & Lambie EJ (2018) Overlapping expression patterns and functions of three paralogous P5B ATPases in Caenorhabditis elegans. PLoS One 13, e0194451.
Schultheis PJ, Hagen TT, O'Toole KK, Tachibana A, Burke CR, McGill DL, Okunade GW & Shull GE (2004) Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem Biophys Res Commun 323, 731-738.
Suzuki C & Shimma Y (1999) P-type ATPase spf1 mutants show a novel resistance mechanism for the killer toxin SMKT. Mol Microbiol 32, 813-823.
Cohen Y, Megyeri M, Chen OC, Condomitti G, Riezman I, Loizides-Mangold U, Abdul-Sada A, Rimon N, Riezman H, Platt FM et al. (2013) The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum. PLoS One 8, e85519.
Corradi GR, de Tezanos Pinto F, Mazzitelli LR & Adamo HP (2012) Shadows of an absent partner: ATP hydrolysis and phosphoenzyme turnover of the Spf1 (sensitivity to Pichia farinosa killer toxin) P5-ATPase. J Biol Chem 287, 30477-30484.
Sørensen DM, Holen HW, Pedersen JT, Martens HJ, Silvestro D, Stanchev LD, Costa SR, Gunther Pomorski T, Lopez-Marques RL & Palmgren M (2019) The P5A ATPase Spf1p is stimulated by phosphatidylinositol 4-phosphate and influences cellular sterol homeostasis. Mol Biol Cell 30, 1069-1084.
Corradi GR, Mazzitelli LR, Petrovich GD, Grenon P, Sorensen DM, Palmgren M, de Tezanos Pinto F & Adamo HP (2020) Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase. PLoS One 15, e0232476.
Tipper DJ & Harley CA (2002) Yeast genes controlling responses to topogenic signals in a model transmembrane protein. Mol Biol Cell 13, 1158-1174.
Chartron JW, Clemons WM Jr & Suloway CJ (2012) The complex process of GETting tail-anchored membrane proteins to the ER. Curr Opin Struct Biol 22, 217-224.
Mariappan M, Mateja A, Dobosz M, Bove E, Hegde RS & Keenan RJ (2011) The mechanism of membrane-associated steps in tail-anchored protein insertion. Nature 477, 61-66.
Ando A & Suzuki C (2005) Cooperative function of the CHD5-like protein Mdm39p with a P-type ATPase Spf1p in the maintenance of ER homeostasis in Saccharomyces cerevisiae. Mol Genet Genomics 273, 497-506.
Pan X, Ye P, Yuan DS, Wang X, Bader JS & Boeke JD (2006) A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 124, 1069-1081.
Krumpe K, Frumkin I, Herzig Y, Rimon N, Ozbalci C, Brugger B, Rapaport D & Schuldiner M (2012) Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Mol Biol Cell 23, 3927-3935.
Dederer V, Khmelinskii A, Huhn AG, Okreglak V, Knop M & Lemberg MK (2019) Cooperation of mitochondrial and ER factors in quality control of tail-anchored proteins. eLife 8, e45506.
Robb A & Brown JD (2001) Protein transport: two translocons are better than one. Mol Cell 8, 484-486.
Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507-519.
Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding HM, Koh JLY, Toufighi K, Mostafavi S et al. (2010) The genetic landscape of a cell. Science 327, 425-431.
McKenna MJ, Sim SI, Ordureau A, Wei L, Harper JW, Shao S & Park E (2020) The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase. Science 369, eabc5809.
Qin Q, Zhao T, Zou W, Shen K & Wang X (2020) An endoplasmic reticulum ATPase safeguards endoplasmic reticulum identity by removing ectopically localized mitochondrial proteins. Cell Rep 33, 108363.
Anazi S, Maddirevula S, Salpietro V, Asi YT, Alsahli S, Alhashem A, Shamseldin HE, AlZahrani F, Patel N, Ibrahim N et al. (2017) Expanding the genetic heterogeneity of intellectual disability. Hum Genet 136, 1419-1429.
Tang LTH, Trivedi M, Freund J, Salazar CJ, Rahman M, Ramirez-Suarez NJ, Lee G, Wang Y, Grant BD & Bulow HE (2021) The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. Plos Genet 17, e1009475.
Li T, Yang X, Feng Z, Nie W & Zou Y (2021) P5A-ATPase controls the ER translocation of Wnt in neuronal migration. bioRxiv, 2021.2004.2013.439568.
Rapoport TA, Li L & Park E (2017) Structural and mechanistic insights into protein translocation. Annu Rev Cell Dev Biol 33, 369-390.
Wohlever ML, Mateja A, McGilvray PT, Day KJ & Keenan RJ (2017) Msp1 is a membrane protein dislocase for tail-anchored proteins. Mol Cell 67, 194-202.
Sim SI, von Bülow S, Hummer G & Park E (2021) Structural basis of polyamine transport by human ATP13A2 (PARK9). bioRxiv, 2021.2005.2028.446245.
Holemans T, Sorensen DM, van Veen S, Martin S, Hermans D, Kemmer GC, Van den Haute C, Baekelandt V, Gunther Pomorski T, Agostinis P et al. (2015) A lipid switch unlocks Parkinson's disease-associated ATP13A2. Proc Natl Acad Sci USA 112, 9040-9045.
van Veen S, Martin S, Van den Haute C, Benoy V, Lyons J, Vanhoutte R, Kahler JP, Decuypere JP, Gelders G, Lambie E et al. (2020) ATP13A2 deficiency disrupts lysosomal polyamine export. Nature 578, 419-424.
Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel OT, Liebau E & Luersen K (2010) Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J 24, 206-217.

Auteurs

Zhiwen Huang (Z)

School of Life Science and Technology, ShanghaiTech University, China.

Zhigang Feng (Z)

School of Life Science and Technology, ShanghaiTech University, China.

Yan Zou (Y)

School of Life Science and Technology, ShanghaiTech University, China.

Articles similaires

AAA+ ATPase chaperone p97/VCP

Fumika Koyano, Koji Yamano, Tomoyuki Hoshina et al.
1.00
Peroxisomes Valosin Containing Protein Humans Animals Mice
Humans Point Mutation Substrate Specificity Adenosine Triphosphatases Nervous System Diseases
Protein Binding Humans Chromosomal Proteins, Non-Histone Quantum Theory Ligands
1.00
HSP90 Heat-Shock Proteins Humans Saccharomyces cerevisiae Adenosine Triphosphate Protein Conformation

Classifications MeSH