No ordinary proteins: Adsorption and molecular orientation of monoclonal antibodies.
Journal
Science advances
ISSN: 2375-2548
Titre abrégé: Sci Adv
Pays: United States
ID NLM: 101653440
Informations de publication
Date de publication:
Aug 2021
Aug 2021
Historique:
received:
07
01
2021
accepted:
07
07
2021
entrez:
28
8
2021
pubmed:
29
8
2021
medline:
29
8
2021
Statut:
epublish
Résumé
The interaction of monoclonal antibodies (mAbs) with air/water interfaces plays a crucial role in their overall stability in solution. We aim to understand this behavior using pendant bubble measurements to track the dynamic tension reduction and x-ray reflectivity to obtain the electron density profiles (EDPs) at the surface. Native immunoglobulin G mAb is a rigid molecule with a flat, "Y" shape, and simulated EDPs are obtained by rotating a homology construct at the surface. Comparing simulations with experimental EDPs, we obtain surface orientation probability maps showing mAbs transition from flat-on Y-shape configurations to side-on or end-on configurations with increasing concentration. The modeling also shows the presence of β sheets at the surface. Overall, the experiments and the homology modeling elucidate the orientational phase space during different stages of adsorption of mAbs at the air/water interface. These finding will help define new strategies for the manufacture and storage of antibody-based therapeutics.
Identifiants
pubmed: 34452912
pii: 7/35/eabg2873
doi: 10.1126/sciadv.abg2873
pmc: PMC8397265
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Références
J Phys Chem B. 2018 May 3;122(17):4662-4666
pubmed: 29629762
Adv Colloid Interface Sci. 2001 Jul 27;91(3):437-71
pubmed: 11511044
Analyst. 2003 Jun;128(6):773-8
pubmed: 12866902
J Colloid Interface Sci. 2006 Jul 15;299(2):850-7
pubmed: 16600281
Langmuir. 2004 Nov 9;20(23):10159-67
pubmed: 15518508
J Mater Sci Mater Med. 2006 Dec;17(12):1211-7
pubmed: 17143751
Curr Pharm Biotechnol. 2008 Dec;9(6):423-30
pubmed: 19075682
Soft Matter. 2016 Apr 14;12(14):3293-302
pubmed: 26891116
ACS Appl Mater Interfaces. 2017 Jul 12;9(27):23202-23211
pubmed: 28613817
Langmuir. 2004 Feb 3;20(3):771-7
pubmed: 15773104
J Magn Reson. 2013 Nov;236:47-56
pubmed: 24056272
J Phys Chem B. 2014 Sep 11;118(36):10662-74
pubmed: 25134605
J Pharm Sci. 2009 Dec;98(12):4525-33
pubmed: 19655376
J Pharm Sci. 2012 Jan;101(1):21-30
pubmed: 21905032
Eur J Pharm Biopharm. 2017 Oct;119:396-407
pubmed: 28743595
Pharm Res. 2013 Jan;30(1):117-30
pubmed: 22910890
Biophys J. 2017 Oct 3;113(7):1505-1519
pubmed: 28978444
Anal Bioanal Chem. 2003 May;376(2):182-8
pubmed: 12679863
Mol Pharm. 2015 Sep 8;12(9):3184-93
pubmed: 26198590
J Mol Biol. 2009 Aug 14;391(2):404-13
pubmed: 19527731
Langmuir. 2009 Jan 6;25(1):32-5
pubmed: 19072146
Proteins. 2014 Aug;82(8):1599-610
pubmed: 24715627
ACS Appl Mater Interfaces. 2020 Feb 26;12(8):9977-9988
pubmed: 32013386
Langmuir. 2016 Oct 4;32(39):9930-9937
pubmed: 27643824
Biochim Biophys Acta. 2010 Apr;1798(4):801-28
pubmed: 20026298
Adv Colloid Interface Sci. 2014 Apr;206:195-206
pubmed: 24332621
Langmuir. 2020 Jul 14;36(27):7814-7823
pubmed: 32551695
J Biol Chem. 1989 Oct 5;264(28):16591-7
pubmed: 2777801
AAPS J. 2019 Mar 26;21(3):44
pubmed: 30915582
Langmuir. 2012 Jan 24;28(3):1765-74
pubmed: 22181558
J Colloid Interface Sci. 2003 Oct 1;266(1):74-81
pubmed: 12957584
J Phys Condens Matter. 2012 Dec 19;24(50):503101
pubmed: 23164927
Langmuir. 2018 Jan 16;34(2):630-638
pubmed: 29251942
MAbs. 2017 Apr;9(3):466-475
pubmed: 28353420
Adv Colloid Interface Sci. 2014 May;207:265-79
pubmed: 24507806
AAPS PharmSciTech. 2011 Jun;12(2):564-72
pubmed: 21538214
Phys Chem Chem Phys. 2006 May 14;8(18):2179-86
pubmed: 16751876