The promise of the gut microbiome as part of individualized treatment strategies.
Journal
Nature reviews. Gastroenterology & hepatology
ISSN: 1759-5053
Titre abrégé: Nat Rev Gastroenterol Hepatol
Pays: England
ID NLM: 101500079
Informations de publication
Date de publication:
01 2022
01 2022
Historique:
accepted:
14
07
2021
pubmed:
29
8
2021
medline:
5
3
2022
entrez:
28
8
2021
Statut:
ppublish
Résumé
Variability in disease presentation, progression and treatment response has been a central challenge in medicine. Although variability in host factors and genetics are important, it has become evident that the gut microbiome, with its vast genetic and metabolic diversity, must be considered in moving towards individualized treatment. In this Review, we discuss six broad disease groups: infectious disease, cancer, metabolic disease, cardiovascular disease, autoimmune or inflammatory disease, and allergic and atopic diseases. We highlight current knowledge on the gut microbiome in disease pathogenesis and prognosis, efficacy, and treatment-related adverse events and its promise for stratifying existing treatments and as a source of novel therapies. The Review is not meant to be comprehensive for each disease state but rather highlights the potential implications of the microbiome as a tool to individualize treatment strategies in clinical practice. Although early, the outlook is optimistic but challenges need to be overcome before clinical implementation, including improved understanding of underlying mechanisms, longitudinal studies with multiple data layers reflecting gut microbiome and host response, standardized approaches to testing and reporting, and validation in larger cohorts. Given progress in the microbiome field with concurrent basic and clinical studies, the microbiome will likely become an integral part of clinical care within the next decade.
Identifiants
pubmed: 34453142
doi: 10.1038/s41575-021-00499-1
pii: 10.1038/s41575-021-00499-1
pmc: PMC8712374
mid: NIHMS1748538
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
7-25Subventions
Organisme : NIDDK NIH HHS
ID : R01 DK114007
Pays : United States
Informations de copyright
© 2021. Springer Nature Limited.
Références
Kashyap, P. C., Chia, N., Nelson, H., Segal, E. & Elinav, E. Microbiome at the frontier of personalized medicine. Mayo Clin. Proc. 92, 1855–1864 (2017).
pubmed: 29202942
doi: 10.1016/j.mayocp.2017.10.004
Jameson, J. L. & Longo, D. L. Precision medicine–personalized, problematic, and promising. N. Engl. J. Med. 372, 2229–2234 (2015).
pubmed: 26014593
doi: 10.1056/NEJMsb1503104
Gilbert, J. A. et al. Current understanding of the human microbiome. Nat. Med. 24, 392–400 (2018).
pubmed: 29634682
pmcid: 7043356
doi: 10.1038/nm.4517
Ejtahed, H. S., Hasani-Ranjbar, S. & Larijani, B. Human microbiome as an approach to personalized medicine. Altern. Ther. Health Med. 23, 8–9 (2017).
pubmed: 28987073
Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R. & Goodman, A. L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 570, 462–467 (2019).
pubmed: 31158845
pmcid: 6597290
doi: 10.1038/s41586-019-1291-3
Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).
pubmed: 15831718
pmcid: 1395357
doi: 10.1126/science.1110591
Schubert, A. M. et al. Microbiome data distinguish patients with Clostridium difficile infection and non-C. difficile-associated diarrhea from healthy controls. mBio 5, e01021-14 (2014).
pubmed: 24803517
pmcid: 4010826
doi: 10.1128/mBio.01021-14
Marchesi, J. R. et al. The gut microbiota and host health: a new clinical frontier. Gut 65, 330–339 (2016).
pubmed: 26338727
doi: 10.1136/gutjnl-2015-309990
Vindigni, S. M. & Surawicz, C. M. Fecal microbiota transplantation. Gastroenterol. Clin. North. Am. 46, 171–185 (2017).
pubmed: 28164849
doi: 10.1016/j.gtc.2016.09.012
Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014).
pubmed: 24912386
doi: 10.1038/nrgastro.2014.66
Gibson, G. R. et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).
pubmed: 28611480
doi: 10.1038/nrgastro.2017.75
Swanson, K. S. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).
pubmed: 32826966
pmcid: 7581511
doi: 10.1038/s41575-020-0344-2
Cully, M. Microbiome therapeutics go small molecule. Nat. Rev. Drug. Discov. 18, 569–572 (2019).
pubmed: 31367062
doi: 10.1038/d41573-019-00122-8
Wong, A. C. & Levy, M. New approaches to microbiome-based therapies. mSystems 4, e00122-19 (2019).
pubmed: 31164406
pmcid: 6584878
doi: 10.1128/mSystems.00122-19
Lessa, F. C. et al. Burden of Clostridium difficile infection in the United States. N. Engl. J. Med. 372, 825–834 (2015).
pubmed: 25714160
doi: 10.1056/NEJMoa1408913
McDonald, L. C. et al. Clinical practice guidelines for clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 66, e1–e48 (2018).
pubmed: 29462280
pmcid: 6018983
doi: 10.1093/cid/cix1085
Song, J. H. & Kim, Y. S. Recurrent Clostridium difficile infection: risk factors, treatment, and prevention. Gut Liver 13, 16–24 (2019).
pubmed: 30400734
doi: 10.5009/gnl18071
Antharam, V, C. et al. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. J. Clin. Microbiol. 51, 2884–2892 (2013).
doi: 10.1128/JCM.00845-13
Battaglioli, E. J. et al. Clostridioides difficile uses amino acids associated with gut microbial dysbiosis in a subset of patients with diarrhea. Sci Transl Med 10, eaam7019 (2018).
pubmed: 30355801
pmcid: 6537101
doi: 10.1126/scitranslmed.aam7019
Ng, K. M. et al. Microbiota-liberated host sugars facilitate post-antibiotic expansion of enteric pathogens. Nature 502, 96–99 (2013).
pubmed: 23995682
pmcid: 3825626
doi: 10.1038/nature12503
Ferreyra, J. A. et al. Gut microbiota-produced succinate promotes C. difficile infection after antibiotic treatment or motility disturbance. Cell Host Microbe 16, 770–777 (2014).
pubmed: 25498344
pmcid: 4859344
doi: 10.1016/j.chom.2014.11.003
Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).
pubmed: 25337874
doi: 10.1038/nature13828
McDonald, J. A. K. et al. Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology 155, 1495–1507.e15 (2018).
pubmed: 30025704
doi: 10.1053/j.gastro.2018.07.014
Cho, J. et al. Clostridioides difficile whole genome sequencing differentiates relapse with the same strain from reinfection with a new strain. Clin. Infect. Dis. 72, 806–813 (2021).
pubmed: 32064535
doi: 10.1093/cid/ciaa159
Boyd, C. D. & O’Toole, G. A. Second messenger regulation of biofilm formation: breakthroughs in understanding c-di-GMP effector systems. Annu. Rev. Cell Dev. Biol. 28, 439–462 (2012).
pubmed: 23057745
pmcid: 4936406
doi: 10.1146/annurev-cellbio-101011-155705
Liubakka, A. & Vaughn, B. P. Clostridium difficile infection and fecal microbiota transplant. AACN Adv. Crit. Care 27, 324–337 (2016).
pubmed: 27959316
pmcid: 5666691
doi: 10.4037/aacnacc2016703
Tariq, R., Saha, S., Solanky, D., Pardi, D. S. & Khanna, S. Predictors and management of failed fecal microbiota transplantation for recurrent Clostridioides difficile infection. J. Clin. Gastroenterol. 55, 542–547 (2021).
pubmed: 32701563
doi: 10.1097/MCG.0000000000001398
Kelly, C, R. et al. Fecal microbiota transplant is highly effective in real-world practice: initial results from the FMT National Registry. Gastroenterology 160, 183–192.e3 (2021).
doi: 10.1053/j.gastro.2020.09.038
DeFilipp, Z. et al. Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant. N. Engl. J. Med. 381, 2043–2050 (2019).
pubmed: 31665575
doi: 10.1056/NEJMoa1910437
Khanna, S. et al. Gut microbiome predictors of treatment response and recurrence in primary Clostridium difficile infection. Aliment. Pharmacol. Ther. 44, 715–727 (2016).
pubmed: 27481036
pmcid: 5012905
doi: 10.1111/apt.13750
Seekatz, A. M. & Young, V. B. Clostridium difficile and the microbiota. J. Clin. Invest. 124, 4182–4189 (2014).
pubmed: 25036699
pmcid: 4191019
doi: 10.1172/JCI72336
Blount, K. F., Shannon, W. D., Deych, E. & Jones, C. Restoration of bacterial microbiome composition and diversity among treatment responders in a phase 2 trial of RBX2660: an investigational microbiome restoration therapeutic. Open. Forum Infect. Dis. 6, ofz095 (2019).
pubmed: 31024971
pmcid: 6475591
doi: 10.1093/ofid/ofz095
US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03110133 .
US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03244644 .
Gosálbez, L. The microbiome biotech landscape: an analysis of the pharmaceutical pipeline. Microbiome Times https://www.microbiometimes.com/the-microbiome-biotech-landscape-an-analysis-of-the-pharmaceutical-pipeline/ (2020).
Zitvogel, L., Ayyoub, M., Routy, B. & Kroemer, G. Microbiome and anticancer immunosurveillance. Cell 165, 276–287 (2016).
pubmed: 27058662
doi: 10.1016/j.cell.2016.03.001
Zitvogel, L., Daillere, R., Roberti, M. P., Routy, B. & Kroemer, G. Anticancer effects of the microbiome and its products. Nat. Rev. Microbiol. 15, 465–478 (2017).
pubmed: 28529325
doi: 10.1038/nrmicro.2017.44
Kadosh, E. et al. The gut microbiome switches mutant p53 from tumour-suppressive to oncogenic. Nature 586, 133–138 (2020).
pubmed: 32728212
pmcid: 7116712
doi: 10.1038/s41586-020-2541-0
Raskov, H., Burcharth, J. & Pommergaard, H. C. Linking gut microbiota to colorectal cancer. J. Cancer 8, 3378–3395 (2017).
pubmed: 29151921
pmcid: 5687151
doi: 10.7150/jca.20497
Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks
pubmed: 32106218
pmcid: 8142898
doi: 10.1038/s41586-020-2080-8
Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806.e12 (2019).
pubmed: 31398337
pmcid: 7288240
doi: 10.1016/j.cell.2019.07.008
Alexander, J. L. et al. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 14, 356–365 (2017).
pubmed: 28270698
doi: 10.1038/nrgastro.2017.20
Schiavoni, G. et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res. 71, 768–778 (2011).
pubmed: 21156650
doi: 10.1158/0008-5472.CAN-10-2788
Viaud, S. et al. Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 71, 661–665 (2011).
pubmed: 21148486
doi: 10.1158/0008-5472.CAN-10-1259
Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).
pubmed: 24264990
pmcid: 4048947
doi: 10.1126/science.1240537
Iida, N. et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967–970 (2013).
pubmed: 24264989
pmcid: 6709532
doi: 10.1126/science.1240527
Panebianco, C., Andriulli, A. & Pazienza, V. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies. Microbiome 6, 92 (2018).
pubmed: 29789015
pmcid: 5964925
doi: 10.1186/s40168-018-0483-7
Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).
pubmed: 29097494
doi: 10.1126/science.aan3706
Derosa, L. et al. Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann. Oncol. 29, 1437–1444 (2018).
pubmed: 29617710
pmcid: 6354674
doi: 10.1093/annonc/mdy103
Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).
pubmed: 26541610
pmcid: 4721659
doi: 10.1126/science.aad1329
Mager, L. F. et al. Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369, 1481–1489 (2020).
pubmed: 32792462
doi: 10.1126/science.abc3421
Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).
pubmed: 26541606
pmcid: 4873287
doi: 10.1126/science.aac4255
Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).
pubmed: 29302014
pmcid: 6707353
doi: 10.1126/science.aao3290
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
pubmed: 29097493
doi: 10.1126/science.aan4236
Fu, Z. D., Selwyn, F. P., Cui, J. Y. & Klaassen, C. D. RNA-Seq profiling of intestinal expression of xenobiotic processing genes in germ-free mice. Drug. Metab. Dispos. 45, 1225–1238 (2017).
pubmed: 28939687
pmcid: 5676297
doi: 10.1124/dmd.117.077313
Nichols, R. G., Peters, J. M. & Patterson, A. D. Interplay between the host, the human microbiome, and drug metabolism. Hum. Genomics 13, 27 (2019).
pubmed: 31186074
pmcid: 6558703
doi: 10.1186/s40246-019-0211-9
Diasio, R. B. Sorivudine and 5-fluorouracil; a clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br. J. Clin. Pharmacol. 46, 1–4 (1998).
pubmed: 9690942
pmcid: 1873978
doi: 10.1046/j.1365-2125.1998.00050.x
Nakayama, H. et al. Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics 7, 35–43 (1997).
pubmed: 9110360
doi: 10.1097/00008571-199702000-00005
Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010).
pubmed: 21051639
pmcid: 3110694
doi: 10.1126/science.1191175
Kodawara, T. et al. The inhibitory effect of ciprofloxacin on the beta-glucuronidase-mediated deconjugation of the irinotecan metabolite SN-38-G. Basic Clin. Pharmacol. Toxicol. 118, 333–337 (2016).
pubmed: 26518357
doi: 10.1111/bcpt.12511
Mego, M. et al. Prevention of irinotecan induced diarrhea by probiotics: a randomized double blind, placebo controlled pilot study. Complement. Ther. Med. 23, 356–362 (2015).
pubmed: 26051570
doi: 10.1016/j.ctim.2015.03.008
Bhatt, A. P. et al. Targeted inhibition of gut bacterial beta-glucuronidase activity enhances anticancer drug efficacy. Proc. Natl Acad. Sci. USA 117, 7374–7381 (2020).
pubmed: 32170007
pmcid: 7132129
doi: 10.1073/pnas.1918095117
Yamamoto, K. et al. Relationship between adverse events and microbiomes in advanced hepatocellular carcinoma patients treated with sorafenib. Anticancer. Res. 40, 665–676 (2020).
pubmed: 32014907
doi: 10.21873/anticanres.13996
Ianiro, G. et al. Faecal microbiota transplantation for the treatment of diarrhoea induced by tyrosine-kinase inhibitors in patients with metastatic renal cell carcinoma. Nat. Commun. 11, 4333 (2020).
pubmed: 32859933
pmcid: 7455693
doi: 10.1038/s41467-020-18127-y
Whidbey, C. et al. A probe-enabled approach for the selective isolation and characterization of functionally active subpopulations in the gut microbiome. J. Am. Chem. Soc. 141, 42–47 (2019).
pubmed: 30541282
doi: 10.1021/jacs.8b09668
Hales, C. M., Carroll, M. D., Fryar, C. D. & Ogden, C. L. Prevalence of obesity and severe obesity among adults: United States, 2017-2018. NCHS Data Brief 360, 1–8 (2020).
Sze, M. A. & Schloss, P. D. Looking for a signal in the noise: revisiting obesity and the microbiome. mBio 7, e01018-16 (2016).
pubmed: 27555308
pmcid: 4999546
doi: 10.1128/mBio.01018-16
Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).
pubmed: 16033867
pmcid: 1176910
doi: 10.1073/pnas.0504978102
Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).
pubmed: 19901833
doi: 10.1097/MOG.0b013e328333d751
Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).
pubmed: 19043404
doi: 10.1038/nature07540
Waldram, A. et al. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J. Proteome Res. 8, 2361–2375 (2009).
pubmed: 19275195
doi: 10.1021/pr8009885
Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).
pubmed: 18407065
pmcid: 3687783
doi: 10.1016/j.chom.2008.02.015
Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).
pubmed: 24009397
doi: 10.1126/science.1241214
Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).
pubmed: 20368178
pmcid: 2894525
doi: 10.1126/scitranslmed.3000322
Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).
pubmed: 15505215
pmcid: 524219
doi: 10.1073/pnas.0407076101
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312
doi: 10.1038/nature05414
Scheithauer, T. P., Dallinga-Thie, G. M., de Vos, W. M., Nieuwdorp, M. & van Raalte, D. H. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol. Metab. 5, 759–770 (2016).
pubmed: 27617199
pmcid: 5004227
doi: 10.1016/j.molmet.2016.06.002
Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).
pubmed: 17456850
doi: 10.2337/db06-1491
Belizario, J. E., Faintuch, J. & Garay-Malpartida, M. Gut microbiome dysbiosis and immunometabolism: new frontiers for treatment of metabolic diseases. Mediators Inflamm. 2018, 2037838 (2018).
pubmed: 30622429
pmcid: 6304917
doi: 10.1155/2018/2037838
Clarke, G. et al. Minireview: gut microbiota: the neglected endocrine organ. Mol. Endocrinol. 28, 1221–1238 (2014).
pubmed: 24892638
pmcid: 5414803
doi: 10.1210/me.2014-1108
Davis, C. D. The gut microbiome and its role in obesity. Nutr. Today 51, 167–174 (2016).
pubmed: 27795585
pmcid: 5082693
doi: 10.1097/NT.0000000000000167
Ejtahed, H. S., Angoorani, P., Soroush, A. R. & Atlasi, R. Probiotics supplementation for the obesity management; a systematic review of animal studies and clinical trials. Funct. Foods 52, 228–242 (2019).
doi: 10.1016/j.jff.2018.10.039
Cerdo, T., Garcia-Santos, J. A., M, G. B. & Campoy, C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 11, 635 (2019).
pmcid: 6470608
doi: 10.3390/nu11030635
David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).
pubmed: 24336217
doi: 10.1038/nature12820
Smits, S. A., Marcobal, A., Higginbottom, S., Sonnenburg, J. L. & Kashyap, P. C. Individualized responses of gut microbiota to dietary intervention modeled in humanized mice. mSystems 1, e00098-16 (2016).
pubmed: 27822551
pmcid: 5069738
doi: 10.1128/mSystems.00098-16
Kovatcheva-Datchary, P. et al. Simplified intestinal microbiota to study microbe-diet-host interactions in a mouse model. Cell Rep. 26, 3772–3783.e6 (2019).
pubmed: 30917328
pmcid: 6444000
doi: 10.1016/j.celrep.2019.02.090
Muniz Pedrogo, D. A. et al. Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet. Mayo Clin. Proc. 93, 1104–1110 (2018).
pubmed: 30077203
doi: 10.1016/j.mayocp.2018.02.019
Korem, T. et al. Bread affects clinical parameters and induces gut microbiome-associated personal glycemic responses. Cell Metab. 25, 1243–1253.e5 (2017).
pubmed: 28591632
doi: 10.1016/j.cmet.2017.05.002
Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).
pubmed: 26590418
doi: 10.1016/j.cell.2015.11.001
Berry, S. E. et al. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26, 964–973 (2020).
pubmed: 32528151
pmcid: 8265154
doi: 10.1038/s41591-020-0934-0
Jumpertz, R. et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am. J. Clin. Nutr. 94, 58–65 (2011).
pubmed: 21543530
pmcid: 3127503
doi: 10.3945/ajcn.110.010132
Kolodziejczyk, A. A., Zheng, D. & Elinav, E. Diet-microbiota interactions and personalized nutrition. Nat. Rev. Microbiol. 17, 742–753 (2019).
pubmed: 31541197
doi: 10.1038/s41579-019-0256-8
Korpela, K. et al. Gut microbiota signatures predict host and microbiota responses to dietary interventions in obese individuals. PLoS ONE 9, e90702 (2014).
pubmed: 24603757
pmcid: 3946202
doi: 10.1371/journal.pone.0090702
Zmora, N., Suez, J. & Elinav, E. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16, 35–56 (2019).
pubmed: 30262901
doi: 10.1038/s41575-018-0061-2
Zhao, L. et al. A glucagon-like peptide-1 receptor agonist lowers weight by modulating the structure of gut microbiota. Front. Endocrinol. 9, 233 (2018).
doi: 10.3389/fendo.2018.00233
Ejtahed, H. S. et al. Adaptation of human gut microbiota to bariatric surgeries in morbidly obese patients: a systematic review. Microb. Pathog. 116, 13–21 (2018).
pubmed: 29306011
doi: 10.1016/j.micpath.2017.12.074
Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).
pubmed: 28628112
doi: 10.1038/nm.4358
Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).
pubmed: 27892954
doi: 10.1038/nm.4236
Depommier, C. et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat. Med. 25, 1096–1103 (2019).
pubmed: 31263284
pmcid: 6699990
doi: 10.1038/s41591-019-0495-2
Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).
pubmed: 25417156
pmcid: 4255478
doi: 10.1016/j.cell.2014.09.053
US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT04663139 .
Choi, B. S., Daoust, L., Pilon, G., Marette, A. & Tremblay, A. Potential therapeutic applications of the gut microbiome in obesity: from brain function to body detoxification. Int. J. Obes. 44, 1818–1831 (2020).
doi: 10.1038/s41366-020-0618-3
Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).
pubmed: 26633628
pmcid: 4681099
doi: 10.1038/nature15766
Mandic, A. D. et al. Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci. Rep. 9, 1177 (2019).
pubmed: 30718836
pmcid: 6362283
doi: 10.1038/s41598-018-38018-z
Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).
pubmed: 23719380
doi: 10.1038/nature12198
de Groot, P. et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut 69, 502–512 (2020).
pubmed: 31147381
doi: 10.1136/gutjnl-2019-318320
Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).
pubmed: 22728514
doi: 10.1053/j.gastro.2012.06.031
Zhao, L. et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359, 1151–1156 (2018).
pubmed: 29590046
doi: 10.1126/science.aao5774
Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).
pubmed: 27409811
doi: 10.1038/nature18646
Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17 (2018).
pubmed: 30401435
doi: 10.1016/j.cell.2018.09.055
Home, P., Mant, J., Diaz, J. & Turner, C., Guideline Development Group. Management of type 2 diabetes: summary of updated NICE guidance. BMJ 336, 1306–1308 (2008).
pubmed: 18535074
pmcid: 2413390
doi: 10.1136/bmj.39560.442095.AD
Mendes-Soares, H. et al. Assessment of a personalized approach to predicting postprandial glycemic responses to food among individuals without diabetes. JAMA Netw. Open. 2, e188102 (2019).
pubmed: 30735238
pmcid: 6484621
doi: 10.1001/jamanetworkopen.2018.8102
Rena, G., Hardie, D. G. & Pearson, E. R. The mechanisms of action of metformin. Diabetologia 60, 1577–1585 (2017).
pubmed: 28776086
pmcid: 5552828
doi: 10.1007/s00125-017-4342-z
Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).
pubmed: 23804561
doi: 10.1136/gutjnl-2012-303839
Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 5, 14405 (2015).
pubmed: 26396057
pmcid: 4585776
doi: 10.1038/srep14405
Lee, H. & Ko, G. Effect of metformin on metabolic improvement and gut microbiota. Appl. Env. Microbiol. 80, 5935–5943 (2014).
doi: 10.1128/AEM.01357-14
Matheus, V. A., Monteiro, L., Oliveira, R. B., Maschio, D. A. & Collares-Buzato, C. B. Butyrate reduces high-fat diet-induced metabolic alterations, hepatic steatosis and pancreatic beta cell and intestinal barrier dysfunctions in prediabetic mice. Exp. Biol. Med. 242, 1214–1226 (2017).
doi: 10.1177/1535370217708188
Croset, M. et al. Rat small intestine is an insulin-sensitive gluconeogenic organ. Diabetes 50, 740–746 (2001).
pubmed: 11289037
doi: 10.2337/diabetes.50.4.740
De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).
pubmed: 24412651
doi: 10.1016/j.cell.2013.12.016
Bryrup, T. et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia 62, 1024–1035 (2019).
pubmed: 30904939
pmcid: 6509092
doi: 10.1007/s00125-019-4848-7
Madsen, M. S. A. et al. Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci. Rep. 9, 15582 (2019).
pubmed: 31666597
pmcid: 6821799
doi: 10.1038/s41598-019-52103-x
Perraudeau, F. et al. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care 8, e001319 (2020).
pubmed: 32675291
pmcid: 7368581
doi: 10.1136/bmjdrc-2020-001319
Tripathi, A. et al. The gut-liver axis and the intersection with the microbiome. Nat. Rev. Gastroenterol. Hepatol. 15, 397–411 (2018).
pubmed: 29748586
pmcid: 6319369
doi: 10.1038/s41575-018-0011-z
Mouzaki, M. et al. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 58, 120–127 (2013).
pubmed: 23401313
doi: 10.1002/hep.26319
Mohammadi, Z. et al. Fecal microbiota in non-alcoholic fatty liver disease and non-alcoholic steatohepatitis: a systematic review. Arch. Iran. Med. 23, 44–52 (2020).
pubmed: 31910634
Leung, C., Rivera, L., Furness, J. B. & Angus, P. W. The role of the gut microbiota in NAFLD. Nat. Rev. Gastroenterol. Hepatol. 13, 412–425 (2016).
pubmed: 27273168
doi: 10.1038/nrgastro.2016.85
Le Roy, T. et al. Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut 62, 1787–1794 (2013).
pubmed: 23197411
doi: 10.1136/gutjnl-2012-303816
Zhu, L. et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology 57, 601–609 (2013).
pubmed: 23055155
doi: 10.1002/hep.26093
Dawes, E. A. & Foster, S. M. The formation of ethanol in Escherichia coli. Biochim. Biophys. Acta 22, 253–265 (1956).
pubmed: 13382840
doi: 10.1016/0006-3002(56)90148-2
Malik, F., Wickremesinghe, P. & Saverimuttu, J. Case report and literature review of auto-brewery syndrome: probably an underdiagnosed medical condition. BMJ Open. Gastroenterol. 6, e000325 (2019).
pubmed: 31423320
pmcid: 6688673
doi: 10.1136/bmjgast-2019-000325
Brandt, A. et al. Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci. Rep. 9, 6668 (2019).
pubmed: 31040374
pmcid: 6491483
doi: 10.1038/s41598-019-43228-0
Li, Y., Liu, L., Wang, B., Wang, J. & Chen, D. Metformin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Biomed. Rep. 1, 57–64 (2013).
pubmed: 24648894
doi: 10.3892/br.2012.18
Ma, J., Zhou, Q. & Li, H. Gut microbiota and nonalcoholic fatty liver disease: insights on mechanisms and therapy. Nutrients 9, 1124 (2017).
pmcid: 5691740
doi: 10.3390/nu9101124
Zhou, D. et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci. Rep. 7, 1529 (2017).
pubmed: 28484247
pmcid: 5431549
doi: 10.1038/s41598-017-01751-y
Garcia-Lezana, T. et al. Restoration of a healthy intestinal microbiota normalizes portal hypertension in a rat model of nonalcoholic steatohepatitis. Hepatology 67, 1485–1498 (2018).
pubmed: 29113028
doi: 10.1002/hep.29646
Craven, L. et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am. J. Gastroenterol. 115, 1055–1065 (2020).
pubmed: 32618656
doi: 10.14309/ajg.0000000000000661
Witjes, J. J. et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol. Commun. 4, 1578–1590 (2020).
pubmed: 33163830
pmcid: 7603524
doi: 10.1002/hep4.1601
US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT02469272 .
US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03803540 .
Alisi, A. et al. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 39, 1276–1285 (2014).
pubmed: 24738701
pmcid: 4046270
doi: 10.1111/apt.12758
Malaguarnera, M. et al. Bifidobacterium longum with fructo-oligosaccharides in patients with non alcoholic steatohepatitis. Dig. Dis. Sci. 57, 545–553 (2012).
pubmed: 21901256
doi: 10.1007/s10620-011-1887-4
Wong, V. W. et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann. Hepatol. 12, 256–262 (2013).
pubmed: 23396737
doi: 10.1016/S1665-2681(19)31364-X
Wong, V. W. et al. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis–a longitudinal study. PLoS ONE 8, e62885 (2013).
pubmed: 23638162
pmcid: 3636208
doi: 10.1371/journal.pone.0062885
Duan, Y. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 575, 505–511 (2019).
pubmed: 31723265
pmcid: 6872939
doi: 10.1038/s41586-019-1742-x
GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).
doi: 10.1016/S0140-6736(16)31012-1
Capewell, S. et al. Cardiovascular risk factor trends and potential for reducing coronary heart disease mortality in the United States of America. Bull. World Health Organ. 88, 120–130 (2010).
pubmed: 20428369
doi: 10.2471/BLT.08.057885
Novakovic, M. et al. Role of gut microbiota in cardiovascular diseases. World J. Cardiol. 12, 110–122 (2020).
pubmed: 32431782
pmcid: 7215967
doi: 10.4330/wjc.v12.i4.110
Peng, J., Xiao, X., Hu, M. & Zhang, X. Interaction between gut microbiome and cardiovascular disease. Life Sci. 214, 153–157 (2018).
pubmed: 30385177
doi: 10.1016/j.lfs.2018.10.063
Organ, C. L. et al. Choline diet and its gut microbe-derived metabolite, trimethylamine n-oxide, exacerbate pressure overload-induced heart failure. Circ. Heart Fail. 9, e002314 (2016).
pubmed: 26699388
doi: 10.1161/CIRCHEARTFAILURE.115.002314
Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).
pubmed: 23614584
pmcid: 3701945
doi: 10.1056/NEJMoa1109400
Martinez-Del Campo, A., Romano, K. A., Rey, F. E. & Balskus, E. P. The plot thickens: diet microbe interactions may modulate thrombosis risk. Cell Metab. 23, 573–575 (2016).
pubmed: 27076072
doi: 10.1016/j.cmet.2016.03.017
Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med. 24, 1407–1417 (2018).
pubmed: 30082863
pmcid: 6129214
doi: 10.1038/s41591-018-0128-1
Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).
pubmed: 23563705
pmcid: 3650111
doi: 10.1038/nm.3145
Zhu, Y., Li, Q. & Jiang, H. Gut microbiota in atherosclerosis: focus on trimethylamine N-oxide. APMIS 128, 353–366 (2020).
pubmed: 32108960
pmcid: 7318354
doi: 10.1111/apm.13038
Romano, K. A., Vivas, E. I., Amador-Noguez, D. & Rey, F. E. Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. mBio 6, e02481 (2015).
pubmed: 25784704
pmcid: 4453578
doi: 10.1128/mBio.02481-14
Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).
pubmed: 26687352
pmcid: 4871610
doi: 10.1016/j.cell.2015.11.055
Rath, S., Heidrich, B., Pieper, D. H. & Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 5, 54 (2017).
pubmed: 28506279
pmcid: 5433236
doi: 10.1186/s40168-017-0271-9
Jie, Z. et al. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8, 845 (2017).
pubmed: 29018189
pmcid: 5635030
doi: 10.1038/s41467-017-00900-1
Ahmad, A. F., Ward, N. C. & Dwivedi, G. The gut microbiome and heart failure. Curr. Opin. Cardiol. 34, 225–232 (2019).
pubmed: 30575647
doi: 10.1097/HCO.0000000000000598
Kamo, T. et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS ONE 12, e0174099 (2017).
pubmed: 28328981
pmcid: 5362204
doi: 10.1371/journal.pone.0174099
Liyanage, T. et al. Effects of the Mediterranean diet on cardiovascular outcomes-a systematic review and meta-analysis. PLoS ONE 11, e0159252 (2016).
pubmed: 27509006
pmcid: 4980102
doi: 10.1371/journal.pone.0159252
Wang, D. D. et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27, 333–343 (2021).
pubmed: 33574608
doi: 10.1038/s41591-020-01223-3
pmcid: 8186452
Marques, F. Z. et al. High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135, 964–977 (2017).
pubmed: 27927713
doi: 10.1161/CIRCULATIONAHA.116.024545
Cena, H. & Calder, P. C. Defining a healthy diet: evidence for the role of contemporary dietary patterns in health and disease. Nutrients 12, 334 (2020).
pmcid: 7071223
doi: 10.3390/nu12020334
Haiser, H. J., Seim, K. L., Balskus, E. P. & Turnbaugh, P. J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5, 233–238 (2014).
pubmed: 24637603
pmcid: 4063850
doi: 10.4161/gmic.27915
Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).
pubmed: 26972811
pmcid: 5243131
doi: 10.1038/nrmicro.2016.17
Pencina, M. J. et al. Application of new cholesterol guidelines to a population-based sample. N. Engl. J. Med. 370, 1422–1431 (2014).
pubmed: 24645848
doi: 10.1056/NEJMoa1315665
Iwaki, Y., Lee, W. & Sugiyama, Y. Comparative and quantitative assessment on statin efficacy and safety: insights into inter-statin and inter-individual variability via dose- and exposure-response relationships. Expert. Opin. Drug Metab. Toxicol. 15, 897–911 (2019).
pubmed: 31648563
doi: 10.1080/17425255.2019.1681399
Sun, B., Li, L. & Zhou, X. Comparative analysis of the gut microbiota in distinct statin response patients in East China. J. Microbiol. 56, 886–892 (2018).
pubmed: 30484158
doi: 10.1007/s12275-018-8152-x
Kaddurah-Daouk, R. et al. Enteric microbiome metabolites correlate with response to simvastatin treatment. PLoS ONE 6, e25482 (2011).
pubmed: 22022402
pmcid: 3192752
doi: 10.1371/journal.pone.0025482
He, X. et al. Gut microbiota modulation attenuated the hypolipidemic effect of simvastatin in high-fat/cholesterol-diet fed mice. J. Proteome Res. 16, 1900–1910 (2017).
pubmed: 28378586
pmcid: 5687503
doi: 10.1021/acs.jproteome.6b00984
Wang, L. et al. The influence of the intestinal microflora to the efficacy of Rosuvastatin. Lipids Health Dis. 17, 151 (2018).
pubmed: 29960598
pmcid: 6026514
doi: 10.1186/s12944-018-0801-x
Yoo, D. H. et al. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug. Metab. Dispos. 42, 1508–1513 (2014).
pubmed: 24947972
doi: 10.1124/dmd.114.058354
Liu, Y. et al. Gut microbiome associates with lipid-lowering effect of rosuvastatin in vivo. Front. Microbiol. 9, 530 (2018).
pubmed: 29623075
pmcid: 5874287
doi: 10.3389/fmicb.2018.00530
Vieira-Silva, S. et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 581, 310–315 (2020).
pubmed: 32433607
doi: 10.1038/s41586-020-2269-x
Mayerhofer, C. C. K. et al. Design of the GutHeart-targeting gut microbiota to treat heart failure-trial: a phase II, randomized clinical trial. ESC Heart Fail. 5, 977–984 (2018).
pubmed: 30088346
pmcid: 6165929
doi: 10.1002/ehf2.12332
US National Library of Medicine. ClinicalTrials.gov https://ClinicalTrials.gov/show/NCT03968549 .
Tang, W. H. W., Li, D. Y. & Hazen, S. L. Dietary metabolism, the gut microbiome, and heart failure. Nat. Rev. Cardiol. 16, 137–154 (2019).
pubmed: 30410105
pmcid: 6377322
doi: 10.1038/s41569-018-0108-7
Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008).
pubmed: 18528968
Bodkhe, R., Balakrishnan, B. & Taneja, V. The role of microbiome in rheumatoid arthritis treatment. Ther Adv Musculoskelet Dis 11, 1759720X19844632 (2019).
pubmed: 31431810
pmcid: 6685117
doi: 10.1177/1759720X19844632
Marietta, E. V. et al. Suppression of inflammatory arthritis by human gut-derived prevotella histicola in humanized mice. Arthritis Rheumatol. 68, 2878–2888 (2016).
pubmed: 27337150
pmcid: 5125894
doi: 10.1002/art.39785
Maeda, Y. et al. Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine. Arthritis Rheumatol. 68, 2646–2661 (2016).
pubmed: 27333153
doi: 10.1002/art.39783
Maeda, Y. & Takeda, K. Host-microbiota interactions in rheumatoid arthritis. Exp. Mol. Med. 51, 1–6 (2019).
pubmed: 31827063
doi: 10.1038/s12276-019-0283-6
Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).
pubmed: 31142855
pmcid: 6650278
doi: 10.1038/s41586-019-1237-9
Picchianti-Diamanti, A. et al. Analysis of gut microbiota in rheumatoid arthritis patients: disease-related dysbiosis and modifications induced by etanercept. Int. J. Mol. Sci. 19, 2938 (2018).
pmcid: 6213034
doi: 10.3390/ijms19102938
Chen, J. et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 8, 43 (2016).
pubmed: 27102666
pmcid: 4840970
doi: 10.1186/s13073-016-0299-7
Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).
pubmed: 26214836
doi: 10.1038/nm.3914
Artacho, A. et al. The pre-treatment gut microbiome is associated with lack of response to methotrexate in new onset rheumatoid arthritis. Arthritis Rheumatol. 73, 931–942 (2020).
doi: 10.1002/art.41622
Nayak, R. R. et al. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 29, 362–377.e11 (2021).
pubmed: 33440172
doi: 10.1016/j.chom.2020.12.008
pmcid: 7954989
Sayers, E., MacGregor, A. & Carding, S. R. Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis. AIMS Microbiol. 4, 642–654 (2018).
pubmed: 31294239
pmcid: 6613334
doi: 10.3934/microbiol.2018.4.642
Ince, A., Yazici, Y., Hamuryudan, V. & Yazici, H. The frequency and clinical characteristics of methotrexate (MTX) oral toxicity in rheumatoid arthritis (RA): a masked and controlled study. Clin. Rheumatol. 15, 491–494 (1996).
pubmed: 8894364
doi: 10.1007/BF02229648
Zhou, B. et al. Induction and amelioration of methotrexate-induced gastrointestinal toxicity are related to immune response and gut microbiota. EBioMedicine 33, 122–133 (2018).
pubmed: 30049384
pmcid: 6085585
doi: 10.1016/j.ebiom.2018.06.029
Schrezenmeier, E. & Dorner, T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat. Rev. Rheumatol. 16, 155–166 (2020).
pubmed: 32034323
doi: 10.1038/s41584-020-0372-x
Scher, J. U. & Abramson, S. B. The microbiome and rheumatoid arthritis. Nat. Rev. Rheumatol. 7, 569–578 (2011).
pubmed: 21862983
pmcid: 3275101
doi: 10.1038/nrrheum.2011.121
Zheng, H. et al. Modulation of gut microbiome composition and function in experimental colitis treated with sulfasalazine. Front. Microbiol. 8, 1703 (2017).
pubmed: 28936203
pmcid: 5594074
doi: 10.3389/fmicb.2017.01703
LoGuidice, A., Wallace, B. D., Bendel, L., Redinbo, M. R. & Boelsterli, U. A. Pharmacologic targeting of bacterial beta-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J. Pharmacol. Exp. Ther. 341, 447–454 (2012).
pubmed: 22328575
pmcid: 3336811
doi: 10.1124/jpet.111.191122
Saitta, K. S. et al. Bacterial beta-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica 44, 28–35 (2014).
pubmed: 23829165
doi: 10.3109/00498254.2013.811314
Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. & Nicholson, J. K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl Acad. Sci. USA 106, 14728–14733 (2009).
pubmed: 19667173
pmcid: 2731842
doi: 10.1073/pnas.0904489106
So, J. S. et al. Lactobacillus casei suppresses experimental arthritis by down-regulating T helper 1 effector functions. Mol. Immunol. 45, 2690–2699 (2008).
pubmed: 18243320
doi: 10.1016/j.molimm.2007.12.010
Mandel, D. R., Eichas, K. & Holmes, J. Bacillus coagulans: a viable adjunct therapy for relieving symptoms of rheumatoid arthritis according to a randomized, controlled trial. BMC Complement. Altern. Med. 10, 1 (2010).
pubmed: 20067641
pmcid: 2826289
doi: 10.1186/1472-6882-10-1
Lopez, J. & Grinspan, A. Fecal microbiota transplantation for inflammatory bowel disease. Gastroenterol. Hepatol. 12, 374–379 (2016).
Singh, S. et al. Systematic review with meta-analysis: faecal diversion for management of perianal Crohn’s disease. Aliment. Pharmacol. Ther. 42, 783–792 (2015).
pubmed: 26264359
pmcid: 6698449
doi: 10.1111/apt.13356
Nitzan, O., Elias, M., Peretz, A. & Saliba, W. Role of antibiotics for treatment of inflammatory bowel disease. World J. Gastroenterol. 22, 1078–1087 (2016).
pubmed: 26811648
pmcid: 4716021
doi: 10.3748/wjg.v22.i3.1078
Chassaing, B. & Darfeuille-Michaud, A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology 140, 1720–1728 (2011).
pubmed: 21530738
doi: 10.1053/j.gastro.2011.01.054
Britton, G. J. et al. Defined microbiota transplant restores Th17/RORγt
pubmed: 32817490
pmcid: 7474624
doi: 10.1073/pnas.1922189117
Machiels, K. et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63, 1275–1283 (2014).
pubmed: 24021287
doi: 10.1136/gutjnl-2013-304833
Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).
pubmed: 18936492
pmcid: 2575488
doi: 10.1073/pnas.0804812105
Kumar, M., Garand, M. & Al Khodor, S. Integrating omics for a better understanding of inflammatory bowel disease: a step towards personalized medicine. J. Transl Med. 17, 419 (2019).
pubmed: 31836022
pmcid: 6909475
doi: 10.1186/s12967-019-02174-1
Negroni, A. et al. Characterization of adherent-invasive Escherichia coli isolated from pediatric patients with inflammatory bowel disease. Inflamm. Bowel Dis. 18, 913–924 (2012).
pubmed: 21994005
doi: 10.1002/ibd.21899
Campos, N. et al. Macrophages from IBD patients exhibit defective tumour necrosis factor-alpha secretion but otherwise normal or augmented pro-inflammatory responses to infection. Immunobiology 216, 961–970 (2011).
pubmed: 21269730
doi: 10.1016/j.imbio.2011.01.002
Sasaki, M. et al. Invasive Escherichia coli are a feature of Crohn’s disease. Lab. Invest. 87, 1042–1054 (2007).
pubmed: 17660846
doi: 10.1038/labinvest.3700661
Zeng, M. Y., Inohara, N. & Nunez, G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 10, 18–26 (2017).
pubmed: 27554295
doi: 10.1038/mi.2016.75
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15, 382–392 (2014).
pubmed: 24629344
pmcid: 4059512
doi: 10.1016/j.chom.2014.02.005
Scales, B. S., Dickson, R. P. & Huffnagle, G. B. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J. Leukoc. Biol. 100, 943–950 (2016).
pubmed: 27365534
pmcid: 5069096
doi: 10.1189/jlb.3MR0316-106R
Garsin, D. A. Ethanolamine utilization in bacterial pathogens: roles and regulation. Nat. Rev. Microbiol. 8, 290–295 (2010).
pubmed: 20234377
pmcid: 2950637
doi: 10.1038/nrmicro2334
Fornelos, N. et al. Growth effects of N-acylethanolamines on gut bacteria reflect altered bacterial abundances in inflammatory bowel disease. Nat. Microbiol. 5, 486–497 (2020).
pubmed: 31959971
pmcid: 7047597
doi: 10.1038/s41564-019-0655-7
Ni, J. et al. A role for bacterial urease in gut dysbiosis and Crohn’s disease. Sci. Transl Med. 9, eaah6888 (2017).
pubmed: 29141885
pmcid: 5808452
doi: 10.1126/scitranslmed.aah6888
Lewis, J. D. et al. Inflammation, antibiotics, and diet as environmental stressors of the gut microbiome in pediatric Crohn’s disease. Cell Host Microbe 22, 247 (2017).
pubmed: 28799909
doi: 10.1016/j.chom.2017.07.011
Martin, R. et al. Functional characterization of novel faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front. Microbiol. 8, 1226 (2017).
pubmed: 28713353
pmcid: 5492426
doi: 10.3389/fmicb.2017.01226
Ananthakrishnan, A. N. et al. Gut microbiome function predicts response to anti-integrin biologic therapy in inflammatory bowel diseases. Cell Host Microbe 21, 603–610.e3 (2017).
pubmed: 28494241
pmcid: 5705050
doi: 10.1016/j.chom.2017.04.010
Rajca, S. et al. Alterations in the intestinal microbiome (dysbiosis) as a predictor of relapse after infliximab withdrawal in Crohn’s disease. Inflamm. Bowel Dis. 20, 978–986 (2014).
pubmed: 24788220
Jeong, D. Y. et al. Induction and maintenance treatment of inflammatory bowel disease: a comprehensive review. Autoimmun. Rev. 18, 439–454 (2019).
pubmed: 30844556
doi: 10.1016/j.autrev.2019.03.002
McIlroy, J., Ianiro, G., Mukhopadhya, I., Hansen, R. & Hold, G. L. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment. Pharmacol. Ther. 47, 26–42 (2018).
pubmed: 29034981
doi: 10.1111/apt.14384
Zhang, M. et al. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS ONE 9, e109146 (2014).
pubmed: 25275569
pmcid: 4183556
doi: 10.1371/journal.pone.0109146
Huang, X. L. et al. Faecalibacterium prausnitzii supernatant ameliorates dextran sulfate sodium induced colitis by regulating Th17 cell differentiation. World J. Gastroenterol. 22, 5201–5210 (2016).
pubmed: 27298563
pmcid: 4893467
doi: 10.3748/wjg.v22.i22.5201
Zhou, L. et al. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm. Bowel Dis. 24, 1926–1940 (2018).
pubmed: 29796620
doi: 10.1093/ibd/izy182
Moayyedi, P. et al. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149, 102–109.e6 (2015).
pubmed: 25857665
doi: 10.1053/j.gastro.2015.04.001
Hill, D. A. & Spergel, J. M. The atopic march: critical evidence and clinical relevance. Ann. Allergy Asthma Immunol. 120, 131–137 (2018).
pubmed: 29413336
pmcid: 5806141
doi: 10.1016/j.anai.2017.10.037
Iweala, O. I. & Nagler, C. R. The microbiome and food allergy. Annu. Rev. Immunol. 37, 377–403 (2019).
pubmed: 31026410
doi: 10.1146/annurev-immunol-042718-041621
Huang, Y. J. et al. The microbiome in allergic disease: current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J. Allergy Clin. Immunol. 139, 1099–1110 (2017).
pubmed: 28257972
pmcid: 5899886
doi: 10.1016/j.jaci.2017.02.007
Berin, M. C. & Sampson, H. A. Mucosal immunology of food allergy. Curr. Biol. 23, R389–R400 (2013).
pubmed: 23660362
pmcid: 3667506
doi: 10.1016/j.cub.2013.02.043
Zhao, W., Ho, H. E. & Bunyavanich, S. The gut microbiome in food allergy. Ann. Allergy Asthma Immunol. 122, 276–282 (2019).
pubmed: 30578857
doi: 10.1016/j.anai.2018.12.012
Bunyavanich, S. et al. Early-life gut microbiome composition and milk allergy resolution. J. Allergy Clin. Immunol. 138, 1122–1130 (2016).
pubmed: 27292825
pmcid: 5056801
doi: 10.1016/j.jaci.2016.03.041
Fazlollahi, M. et al. Early-life gut microbiome and egg allergy. Allergy 73, 1515–1524 (2018).
pubmed: 29318631
doi: 10.1111/all.13389
Thompson-Chagoyan, O. C., Vieites, J. M., Maldonado, J., Edwards, C. & Gil, A. Changes in faecal microbiota of infants with cow’s milk protein allergy–a Spanish prospective case-control 6-month follow-up study. Pediatr. Allergy Immunol. 21, e394–e400 (2010).
pubmed: 19889194
doi: 10.1111/j.1399-3038.2009.00961.x
Feehley, T. et al. Healthy infants harbor intestinal bacteria that protect against food allergy. Nat. Med. 25, 448–453 (2019).
pubmed: 30643289
pmcid: 6408964
doi: 10.1038/s41591-018-0324-z
Abdel-Gadir, A. et al. Microbiota therapy acts via a regulatory T cell MyD88/RORγt pathway to suppress food allergy. Nat. Med. 25, 1164–1174 (2019).
pubmed: 31235962
pmcid: 6677395
doi: 10.1038/s41591-019-0461-z
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).
pubmed: 24226770
doi: 10.1038/nature12721
Berni Canani, R. et al. Specific signatures of the gut microbiota and increased levels of butyrate in children treated with fermented cow’s milk containing heat-killed Lactobacillus paracasei CBA L74. Appl Environ Microbiol 83, e01206-17 (2017).
pubmed: 28733284
pmcid: 5601345
doi: 10.1128/AEM.01206-17
Berni Canani, R. et al. Effect of Lactobacillus GG on tolerance acquisition in infants with cow’s milk allergy: a randomized trial. J. Allergy Clin. Immunol. 129, 580–582 (2012).
pubmed: 22078573
doi: 10.1016/j.jaci.2011.10.004
Lynch, S. V. & Boushey, H. A. The microbiome and development of allergic disease. Curr. Opin. Allergy Clin. Immunol. 16, 165–171 (2016).
pubmed: 26885707
pmcid: 5378446
doi: 10.1097/ACI.0000000000000255
Fujimura, K. E. et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation. Nat. Med. 22, 1187–1191 (2016).
pubmed: 27618652
pmcid: 5053876
doi: 10.1038/nm.4176
Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).
pubmed: 27518660
pmcid: 5137793
doi: 10.1056/NEJMoa1508749
Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).
pubmed: 22442383
pmcid: 3437652
doi: 10.1126/science.1219328
Arrieta, M. C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl Med. 7, 307ra152 (2015).
pubmed: 26424567
doi: 10.1126/scitranslmed.aab2271
Barcik, W. et al. Histamine-secreting microbes are increased in the gut of adult asthma patients. J. Allergy Clin. Immunol. 138, 1491–1494.e7 (2016).
pubmed: 27576125
doi: 10.1016/j.jaci.2016.05.049
Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).
pubmed: 21345099
doi: 10.1056/NEJMoa1007302
Schuijs, M. J. et al. Farm dust and endotoxin protect against allergy through A20 induction in lung epithelial cells. Science 349, 1106–1110 (2015).
pubmed: 26339029
doi: 10.1126/science.aac6623
Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).
pubmed: 19330007
pmcid: 2789255
doi: 10.1038/nm.1946
Debarry, J. et al. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J. Allergy Clin. Immunol. 119, 1514–1521 (2007).
pubmed: 17481709
doi: 10.1016/j.jaci.2007.03.023
Frati, F. et al. The role of the microbiome in asthma: the gut–lung axis. Int. J. Mol. Sci. 20, 123 (2018).
pmcid: 6337651
doi: 10.3390/ijms20010123
Penders, J. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56, 661–667 (2007).
pubmed: 17047098
doi: 10.1136/gut.2006.100164
van Nimwegen, F. A. et al. Mode and place of delivery, gastrointestinal microbiota, and their influence on asthma and atopy. J. Allergy Clin. Immunol. 128, 948–955.e1-3 (2011).
pubmed: 21872915
doi: 10.1016/j.jaci.2011.07.027
Bjorksten, B., Sepp, E., Julge, K., Voor, T. & Mikelsaar, M. Allergy development and the intestinal microflora during the first year of life. J. Allergy Clin. Immunol. 108, 516–520 (2001).
pubmed: 11590374
doi: 10.1067/mai.2001.118130
Trompette, A. et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159–166 (2014).
pubmed: 24390308
doi: 10.1038/nm.3444
Fujimura, K. E. & Lynch, S. V. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe 17, 592–602 (2015).
pubmed: 25974301
pmcid: 4443817
doi: 10.1016/j.chom.2015.04.007
Levan, S. R. et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat. Microbiol. 4, 1851–1861 (2019).
pubmed: 31332384
pmcid: 6830510
doi: 10.1038/s41564-019-0498-2
Durack, J. et al. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat. Commun. 9, 707 (2018).
pubmed: 29453431
pmcid: 5816017
doi: 10.1038/s41467-018-03157-4
Vujkovic-Cvijin, I. et al. Host variables confound gut microbiota studies of human disease. Nature 587, 448–454 (2020).
pubmed: 33149306
pmcid: 7677204
doi: 10.1038/s41586-020-2881-9
Mars, R. A. T. et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 182, 1460–1473.e17 (2020).
pubmed: 32916129
pmcid: 8109273
doi: 10.1016/j.cell.2020.08.007
Poyet, M. et al. A library of human gut bacterial isolates paired with longitudinal multiomics data enables mechanistic microbiome research. Nat. Med. 25, 1442–1452 (2019).
pubmed: 31477907
doi: 10.1038/s41591-019-0559-3
Javdan, B. et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell 181, 1661–1679.e22 (2020).
pubmed: 32526207
pmcid: 8591631
doi: 10.1016/j.cell.2020.05.001
Blaser, M. J. Missing microbes: how the overuse of antibiotics is fueling our modern plagues. Emerg. Infect. Dis. 20, 1961 (2014).
doi: 10.3201/eid2011.141052
Vuotto, C., Moura, I., Barbanti, F., Donelli, G. & Spigaglia, P. Subinhibitory concentrations of metronidazole increase biofilm formation in Clostridium difficile strains. Pathog. Dis. 74, ftv114 (2016).
pubmed: 26656887
doi: 10.1093/femspd/ftv114
Maldarelli, G. A. et al. Type IV pili promote early biofilm formation by Clostridium difficile. Pathog. Dis. 74, ftw061 (2016).
pubmed: 27369898
pmcid: 5985507
doi: 10.1093/femspd/ftw061
Ethapa, T. et al. Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J. Bacteriol. 195, 545–555 (2013).
pubmed: 23175653
pmcid: 3554014
doi: 10.1128/JB.01980-12