Shank3 Deficiency is Associated With Altered Profile of Neurotransmission Markers in Pups and Adult Mice.
Anxiety
Autism
GABA
Locomotor activity
Serotonin transporter
Shank3
Journal
Neurochemical research
ISSN: 1573-6903
Titre abrégé: Neurochem Res
Pays: United States
ID NLM: 7613461
Informations de publication
Date de publication:
Dec 2021
Dec 2021
Historique:
received:
29
03
2021
accepted:
20
08
2021
revised:
04
08
2021
pubmed:
29
8
2021
medline:
10
2
2022
entrez:
28
8
2021
Statut:
ppublish
Résumé
Alterations in the balance between excitation and inhibition, especially in the brain's critical developmental periods, are considered an integral part of the pathophysiology of autism. However, the precise mechanisms have not yet been established. SH3 and multiple Ankyrin repeat domains 3 (Shank3) deficient mice represent a well-established transgenic model of a neurodevelopmental disorder with autistic symptomatology. In this study, we characterize the consequences of Shank3 deficiency according to (1) expression of specific markers of different neuronal populations in pups and adult mice and (2) social behaviour and anxiety in adult mice. Our research found enhanced expression of serotonin transporter and choline acetyltransferase in the hippocampus and hypothalamus in Shank3-deficient pups. We demonstrated marked brain region differences in expression of excitatory glutamatergic markers in pups and adult Shank3 deficient mice. We also observed reduced expression of inhibitory GABAergic markers and GABA receptor subunits in several brain areas in both pups and adult Shank3 deficient mice. Further analysis of dopaminergic brain areas (nucleus accumbens, ventral tegmental area) revealed lower expression levels of GABAergic markers in adult Shank3 deficient mice. Adult Shank3
Identifiants
pubmed: 34453663
doi: 10.1007/s11064-021-03435-6
pii: 10.1007/s11064-021-03435-6
doi:
Substances chimiques
Microfilament Proteins
0
Nerve Tissue Proteins
0
Shank3 protein, mouse
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3342-3355Subventions
Organisme : Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
ID : VEGA 2/0155/20
Organisme : Agentúra Ministerstva Školstva, Vedy, Výskumu a Športu SR
ID : VEGA 2/0148/21
Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-15-205
Organisme : Agentúra na Podporu Výskumu a Vývoja
ID : APVV-15-0045
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Sun X, Allison C, Auyeung B, Zhang Z, Matthews FE, Baron-Cohen S, Brayne C (2015) Validation of existing diagnosis of autism in mainland China using standardised diagnostic instruments. Autism 19(8):1010–1017. doi: https://doi.org/10.1177/1362361314556785
doi: 10.1177/1362361314556785
pubmed: 25757721
pmcid: 4863932
Sengupta P (2013) The laboratory rat: relating its age with human’s. Int J Prev Med 4(6):624–630
pubmed: 23930179
pmcid: 3733029
Heavner WE, Smith SEP (2020) Resolving the synaptic versus developmental dichotomy of autism risk genes. Trends Neurosci 43(4):227–241. https://doi.org/10.1016/j.tins.2020.01.009
doi: 10.1016/j.tins.2020.01.009
pubmed: 32209454
pmcid: 7101276
Morton RA, Yanagawa Y, Valenzuela CF (2016) Electrophysiological assessment of serotonin and GABA neuron function in the dorsal raphe during the third trimester equivalent developmental period in mice. eNeuro. https://doi.org/10.1523/ENEURO.0079-15.2015
doi: 10.1523/ENEURO.0079-15.2015
pubmed: 27482535
pmcid: 4947983
Tuncdemir SN, Wamsley B, Stam FJ, Osakada F, Goulding M, Callaway EM, Rudy B, Fishell G (2016) Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron 89(3):521–535. https://doi.org/10.1016/j.neuron.2015.11.020
doi: 10.1016/j.neuron.2015.11.020
pubmed: 26844832
pmcid: 4861073
Zander JF, Münster-Wandowski A, Brunk I, Pahner I, Gómez-Lira G, Heinemann U, Gutiérrez R, Laube G, Ahnert-Hilger G (2010) Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses. J Neurosci 30(22):7634–7645. doi: https://doi.org/10.1523/JNEUROSCI.0141-10.2010
doi: 10.1523/JNEUROSCI.0141-10.2010
pubmed: 20519538
pmcid: 6632366
Nelson SB, Valakh V (2015) Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron 87(4):684–698. https://doi.org/10.1016/j.neuron.2015.07.033
doi: 10.1016/j.neuron.2015.07.033
pubmed: 26291155
pmcid: 4567857
Bruining H, Hardstone R, Juarez-Martinez EL, Sprengers J, Avramiea AE, Simpraga S, Houtman SJ, Poil SS, Dallares E, Palva S, Oranje B, Matias Palva J, Mansvelder HD, Linkenkaer-Hansen K (2020) Measurement of excitation-inhibition ratio in autism spectrum disorder using critical brain dynamics. Sci Rep 10(1):9195. doi: https://doi.org/10.1038/s41598-020-65500-4
doi: 10.1038/s41598-020-65500-4
pubmed: 32513931
pmcid: 7280527
Burrows EL, Koyama L, May C, Hill-Yardin EL, Hannan AJ (2020) Environmental enrichment modulates affiliative and aggressive social behaviour in the neuroligin-3 R451C mouse model of autism spectrum disorder. Pharmacol Biochem Behav 195:172955. https://doi.org/10.1016/j.pbb.2020.172955
doi: 10.1016/j.pbb.2020.172955
pubmed: 32474162
Gąssowska-Dobrowolska M, Cieślik M, Czapski GA, Jęśko H, Frontczak-Baniewicz M, Gewartowska M, Dominiak A, Polowy R, Filipkowski RK, Babiec L, Adamczyk A (2020) Prenatal exposure to valproic acid affects microglia and synaptic ultrastructure in a brain-region-specific manner in young-adult male rats: relevance to autism spectrum disorders. Int J Mol Sci 21(10):3576. https://doi.org/10.3390/ijms21103576
doi: 10.3390/ijms21103576
pmcid: 7279050
Jaramillo TC, Xuan Z, Reimers JM, Escamilla CO, Liu S, Powell CM (2020) Early restoration of Shank3 expression in Shank3 knock-out mice prevents core ASD-like behavioral phenotypes. eNeuro. https://doi.org/10.1523/ENEURO.0332-19.2020
doi: 10.1523/ENEURO.0332-19.2020
pubmed: 32327468
pmcid: 7294460
Castelhano AS, CassaneGdos S, Scorza FA, Cysneiros RM (2013) Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures. Front Behav Neurosci 7:36. https://doi.org/10.3389/fnbeh.2013.00036
doi: 10.3389/fnbeh.2013.00036
pubmed: 23675329
pmcid: 3648772
Bögi E, Belovičová K, Moravčíková L, Csatlósová K, Dremencov E, Lacinova L, Dubovicky M (2019) Pre-gestational stress impacts excitability of hippocampal cells in vitro and is associated with neurobehavioral alterations during adulthood. Behav Brain Res 375:112131. doi: https://doi.org/10.1016/j.bbr.2019.112131
doi: 10.1016/j.bbr.2019.112131
pubmed: 31377253
Wang J, Fernández AE, Tiano S, Huang J, Floyd E, Poulev A, Ribnicky D, Pasinetti GM (2018) An extract of Artemisia dracunculus L. promotes psychological resilience in a mouse model of depression. Oxid Med Cell Longev 2018:7418681. https://doi.org/10.1155/2018/7418681
doi: 10.1155/2018/7418681
pubmed: 29861834
pmcid: 5971253
Du Z, Tertrais M, Courtand G, Leste-Lasserre T, Cardoit L, Masmejean F, Halgand C, Cho YH, Garret M (2017) Differential alteration in expression of striatal GABAAR subunits in mouse models of huntington’s disease. Front Mol Neurosci 10:198. https://doi.org/10.3389/fnmol.2017.00198
doi: 10.3389/fnmol.2017.00198
pubmed: 28676743
pmcid: 5476702
Lopatina OL, Malinovskaya NA, Komleva YK, Gorina YV, Shuvaev AN, Olovyannikova RY, Belozor OS, Belova OA, Higashida H, Salmina AB (2019) Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 30(8):807–820. doi: https://doi.org/10.1515/revneuro-2019-0014
doi: 10.1515/revneuro-2019-0014
pubmed: 31152644
Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27. doi: https://doi.org/10.1038/ng1933
doi: 10.1038/ng1933
pubmed: 17173049
Guilmatre A, Huguet G, Delorme R, Bourgeron T (2014) The emerging role of SHANK genes in neuropsychiatric disorders. Dev Neurobiol 74(2):113–122. doi: https://doi.org/10.1002/dneu.22128
doi: 10.1002/dneu.22128
pubmed: 24124131
Angelakos CC, Tudor JC, Ferri SL, Jongens TA, Abel T (2019) Home-cage hypoactivity in mouse genetic models of autism spectrum disorder. Neurobiol Learn Mem 165:107000. doi: https://doi.org/10.1016/j.nlm.2019.02.010
doi: 10.1016/j.nlm.2019.02.010
pubmed: 30797034
pmcid: 6913530
Monteiro P, Feng G (2017) SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci 18(3):147–157. https://doi.org/10.1038/nrn.2016.183
doi: 10.1038/nrn.2016.183
pubmed: 28179641
Qiu S, Li Y, Li Y, Zhong W, Shi M, Zhao Q, Zhang K, Wang Y, Lu M, Zhu X, Jiang H, Yu Y, Cheng Y, Liu Y (2018) Association between SHANK3 polymorphisms and susceptibility to autism spectrum disorder. Gene 651:100–105. https://doi.org/10.1016/j.gene.2018.01.078
doi: 10.1016/j.gene.2018.01.078
pubmed: 29408620
Cope EC, Briones BA, Brockett AT, Martinez S, Vigneron PA, Opendak M, Wang SS, Gould E (2016) Immature neurons and radial glia, but not astrocytes or microglia, are altered in adult Cntnap2 and Shank3 mice, models of autism. eNeuro. https://doi.org/10.1523/ENEURO.0196-16.2016
doi: 10.1523/ENEURO.0196-16.2016
pubmed: 27785461
pmcid: 5066262
Jimenez JC, Su K, Goldberg AR, Luna VM, Biane JS, Ordek G, Zhou P, Ong SK, Wright MA, Zweifel L, Paninski L, Hen R, Kheirbek MA (2018) Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97(3):670-683.e6. https://doi.org/10.1016/j.neuron.2018.01.016
doi: 10.1016/j.neuron.2018.01.016
pubmed: 29397273
pmcid: 5877404
Ko J (2017) Neuroanatomical substrates of rodent social behavior: the medial prefrontal cortex and Its projection patterns. Front Neural Circuits 11:41. https://doi.org/10.3389/fncir.2017.00041
doi: 10.3389/fncir.2017.00041
pubmed: 28659766
pmcid: 5468389
Bissonette GB, Roesch MR (2016) Development and function of the midbrain dopamine system: what we know and what we need to. Genes Brain Behav 15(1):62–73. https://doi.org/10.1111/gbb.12257
doi: 10.1111/gbb.12257
pubmed: 26548362
Bey AL, Wang X, Yan H, Kim N, Passman RL, Yang Y, Cao X, Towers AJ, Hulbert SW, Duffney LJ, Gaidis E, Rodriguiz RM, Wetsel WC, Yin HH, Jiang YH (2018) Brain region-specific disruption of Shank3 in mice reveals a dissociation for cortical and striatal circuits in autism-related behaviors. Transl Psychiatry 8(1):94. doi: https://doi.org/10.1038/s41398-018-0142-6
doi: 10.1038/s41398-018-0142-6
pubmed: 29700290
pmcid: 5919902
Chen Q, Deister CA, Gao X, Guo B, Lynn-Jones T, Chen N, Wells MF, Liu R, Goard MJ, Dimidschstein J, Feng S, Shi Y, Liao W, Lu Z, Fishell G, Moore CI, Feng G (2020) Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD. Nat Neurosci 23(4):520–532. doi: https://doi.org/10.1038/s41593-020-0598-6
doi: 10.1038/s41593-020-0598-6
pubmed: 32123378
pmcid: 7131894
Palkovits M (1973) Isolated removal of hypothalamic or other brain nuclei of the rat. Brain Res 59:449–450. doi: https://doi.org/10.1016/0006-8993(73)90290-4
doi: 10.1016/0006-8993(73)90290-4
pubmed: 4747772
Palkovits M, Brownstein M (1988) Maps and guide to microdissection of the rat brain. Elsevier, New York
Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn. Academic Press, New York
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi: https://doi.org/10.1006/meth.2001.1262
doi: 10.1006/meth.2001.1262
pubmed: 11846609
Havranek T, Zatkova M, Lestanova Z, Bacova Z, Mravec B, Hodosy J, Strbak V, Bakos J (2015) Intracerebroventricular oxytocin administration in rats enhances object recognition and increases expression of neurotrophins, microtubule-associated protein 2, and synapsin I. J Neurosci Res 93(6):893–901. doi: https://doi.org/10.1002/jnr.23559
doi: 10.1002/jnr.23559
pubmed: 25612898
Seibenhener ML, Wooten MC (2015) Use of the open field maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp 96:e52434. https://doi.org/10.3791/52434
doi: 10.3791/52434
Drapeau E, Riad M, Kajiwara Y, Buxbaum JD (2018) Behavioral phenotyping of an improved mouse model of Phelan-McDermid syndrome with a complete deletion of the Shank3 sene. eNeuro. https://doi.org/10.1523/ENEURO.0046-18.2018
doi: 10.1523/ENEURO.0046-18.2018
pubmed: 30302388
pmcid: 6175061
Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR (2011) Assessment of social interaction behaviors. J Vis Exp 48:2473. doi: https://doi.org/10.3791/2473
doi: 10.3791/2473
Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN (2004) Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3(5):303–314. doi: https://doi.org/10.1111/j.1601-183X.2004.00071.x
doi: 10.1111/j.1601-183X.2004.00071.x
pubmed: 15344923
Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858. doi: https://doi.org/10.1038/nprot.2006.116
doi: 10.1038/nprot.2006.116
pubmed: 17406317
pmcid: 2895266
Reichova A, Bacova Z, Bukatova S, Kokavcova M, Meliskova V, Frimmel K, Ostatnikova D, Bakos J (2020) Abnormal neuronal morphology and altered synaptic proteins are restored by oxytocin in autism-related SHANK3 deficient model. Mol Cell Endocrinol 518:110924. doi: https://doi.org/10.1016/j.mce.2020.110924
doi: 10.1016/j.mce.2020.110924
pubmed: 32619581
Michalski D, Keck AL, Grosche J, Martens H, Härtig W (2018) Immunosignals of oligodendrocyte markers and myelin-associated proteins are critically affected after experimental stroke in wild-type and Alzheimer modeling mice of different ages. Front Cell Neurosci 12:23. https://doi.org/10.3389/fncel.2018.00023
doi: 10.3389/fncel.2018.00023
pubmed: 29467621
pmcid: 5807905
Manduca A, Servadio M, Damsteegt R, Campolongo P, Vanderschuren LJ, Trezza V (2016) Dopaminergic neurotransmission in the nucleus accumbens modulates social play behavior in rats. Neuropsychopharmacology 41(9):2215–2223. https://doi.org/10.1038/npp.2016.22
doi: 10.1038/npp.2016.22
pubmed: 26860202
pmcid: 4946055
Pearson BL, Corley MJ, Vasconcellos A, Blanchard DC, Blanchard RJ (2013) Heparan sulfate deficiency in autistic postmortem brain tissue from the subventricular zone of the lateral ventricles. Behav Brain Res 243:138–145. doi: https://doi.org/10.1016/j.bbr.2012.12.062
doi: 10.1016/j.bbr.2012.12.062
pubmed: 23318464
pmcid: 3594061
Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, Barnes CC, Pierce K (2011) Neuron number and size in prefrontal cortex of children with autism. JAMA 306(18):2001–2010. doi: https://doi.org/10.1001/jama.2011.1638
doi: 10.1001/jama.2011.1638
pubmed: 22068992
Yang CJ, Tan HP, Du YJ (2014) The developmental disruptions of serotonin signaling may involved in autism during early brain development. Neuroscience 267:1–10. doi: https://doi.org/10.1016/j.neuroscience.2014.02.021
doi: 10.1016/j.neuroscience.2014.02.021
pubmed: 24583042
Muller CL, Anacker AMJ, Veenstra-VanderWeele J (2016) The serotonin system in autism spectrum disorder: from biomarker to animal models. Neuroscience 321:24–41. https://doi.org/10.1016/j.neuroscience.2015.11.010
doi: 10.1016/j.neuroscience.2015.11.010
pubmed: 26577932
Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT (2017) An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psychiatry 7(3):e1067. doi: https://doi.org/10.1038/tp.2017.17
doi: 10.1038/tp.2017.17
pubmed: 28323282
pmcid: 5416665
Filice F, Vörckel KJ, Sungur A, Wöhr M, Schwaller B (2016) Reduction in parvalbumin expression not loss of the parvalbumin-expressing GABA interneuron subpopulation in genetic parvalbumin and shank mouse models of autism. Mol Brain 9:10. doi: https://doi.org/10.1186/s13041-016-0192-8
doi: 10.1186/s13041-016-0192-8
pubmed: 26819149
pmcid: 4729132
Lee B, Zhang Y, Kim Y, Kim S, Lee Y, Han K (2017) Age-dependent decrease of GAD65/67 mRNAs but normal densities of GABAergic interneurons in the brain regions of Shank3-overexpressing manic mouse model. Neurosci Lett 649:48–54. doi: https://doi.org/10.1016/j.neulet.2017.04.016
doi: 10.1016/j.neulet.2017.04.016
pubmed: 28400125
Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47(6):803–815. doi: https://doi.org/10.1016/j.neuron.2005.08.023
doi: 10.1016/j.neuron.2005.08.023
pubmed: 16157276
Catavero C, Bao H, Song J (2018) Neural mechanisms underlying GABAergic regulation of adult hippocampal neurogenesis. Cell Tissue Res 371(1):33–46. doi: https://doi.org/10.1007/s00441-017-2668-y
doi: 10.1007/s00441-017-2668-y
pubmed: 28948349
Leonzino M, Busnelli M, Antonucci F, Verderio C, Mazzanti M, Chini B (2016) The timing of the excitatory-to-inhibitory GABA switch is regulated by the oxytocin receptor via KCC2. Cell Rep 15(1):96–103. https://doi.org/10.1016/j.celrep.2016.03.013
doi: 10.1016/j.celrep.2016.03.013
pubmed: 27052180
pmcid: 4826440
Yang M, Bozdagi O, Scattoni ML, Wöhr M, Roullet FI, Katz AM, Abrams DN, Kalikhman D, Simon H, Woldeyohannes L, Zhang JY, Harris MJ, Saxena R, Silverman JL, Buxbaum JD, Crawley JN (2012) Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 32(19):6525–6541. doi: https://doi.org/10.1523/JNEUROSCI.6107-11.2012
doi: 10.1523/JNEUROSCI.6107-11.2012
pubmed: 22573675
pmcid: 3362928
Yoo T, Cho H, Lee J, Park H, Yoo YE, Yang E, Kim JY, Kim H, Kim E (2018) GABA neuronal deletion of Shank3 exons 14–16 in mice suppresses striatal excitatory synaptic input and induces social and locomotor abnormalities. Front Cell Neurosci 12:341. https://doi.org/10.3389/fncel.2018.00341
doi: 10.3389/fncel.2018.00341
pubmed: 30356810
pmcid: 6189516
Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, Liu S, Jaramillo TC, Bangash M, Xiao B, Worley PF, Powell CM (2013) Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci 33(47):18448–18468. doi: https://doi.org/10.1523/JNEUROSCI.3017-13.2013
doi: 10.1523/JNEUROSCI.3017-13.2013
pubmed: 24259569
pmcid: 3834052
Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, Lascola CD, Fu Z, Feng G (2011) Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472(7344):437–442. https://doi.org/10.1038/nature09965
doi: 10.1038/nature09965
pubmed: 21423165
pmcid: 3090611