Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments.
behavioural ecology
comparative studies
conservation behaviour
human-wildlife interactions
nonhuman primates
social network analysis
Journal
The Journal of animal ecology
ISSN: 1365-2656
Titre abrégé: J Anim Ecol
Pays: England
ID NLM: 0376574
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
received:
24
06
2021
accepted:
23
08
2021
pubmed:
29
8
2021
medline:
24
12
2021
entrez:
28
8
2021
Statut:
ppublish
Résumé
Human population expansion into wildlife habitats has increased interest in the behavioural ecology of human-wildlife interactions. To date, however, the socioecological factors that determine whether, when or where wild animals take risks by interacting with humans and anthropogenic factors still remains unclear. We adopt a comparative approach to address this gap, using social network analysis (SNA). SNA, increasingly implemented to determine human impact on wildlife ecology, can be a powerful tool to understand how animal socioecology influences the spatiotemporal distribution of human-wildlife interactions. For 10 groups of rhesus, long-tailed and bonnet macaques (Macaca spp.) living in anthropogenically impacted environments in Asia, we collected data on human-macaque interactions, animal demographics, and macaque-macaque agonistic and affiliative social interactions. We constructed 'human co-interaction networks' based on associations between macaques that interacted with humans within the same time and spatial locations, and social networks based on macaque-macaque allogrooming behaviour, affiliative behaviours of short duration (agonistic support, lip-smacking, silent bare-teeth displays and non-sexual mounting) and proximity. Pre-network permutation tests revealed that, within all macaque groups, specific individuals jointly took risks by repeatedly, consistently co-interacting with humans within and across time and space. GLMMs revealed that macaques' tendencies to co-interact with humans was positively predicted by their tendencies to engage in short-duration affiliative interactions and tolerance of conspecifics, although the latter varied across species (bonnets>rhesus>long-tailed). Male macaques were more likely to co-interact with humans than females. Neither macaques' grooming relationships nor their dominance ranks predicted their tendencies to co-interact with humans. Our findings suggest that, in challenging anthropogenic environments, less (compared to more) time-consuming forms of affiliation, and additionally greater social tolerance in less ecologically flexible species with a shorter history of exposure to humans, may be key to animals' joint propensities to take risks to gain access to resources. For males, greater exploratory tendencies and less energetically demanding long-term life-history strategies (compared to females) may also influence such joint risk-taking. From conservation and public health perspectives, wildlife connectedness within such co-interaction networks may inform interventions to mitigate zoonosis, and move human-wildlife interactions from conflict towards coexistence.
Identifiants
pubmed: 34453852
doi: 10.1111/1365-2656.13584
doi:
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
2819-2833Informations de copyright
© 2021 British Ecological Society.
Références
Adams, J., Faust, K., & Lovasi, G. S. (2012). Capturing context: Integrating spatial and social network analyses. Social Networks, 34, 1-5. https://doi.org/10.1016/j.socnet.2011.10.007
Albery, G. F., Kirkpatrick, L., Firth, J. A., & Bansal, S. (2020). Unifying spatial and social network analysis in disease ecology. Journal of Animal Ecology, 90, 45-61. https://doi.org/10.1111/1365-2656.13356
Altmann, J. (1974). Observational study of behavior. Behaviour, 49, 227-267.
Aureli, F., Preston, S. D., & de Waal, F. (1999). Heart rate responses to social interactions in free-moving rhesus macaques (Macaca mulatta): A pilot study. Journal of Comparative Psychology, 113(1), 59. https://doi.org/10.1037/0735-7036.113.1.59
Balasubramaniam, K. N., Beisner, B. A., Vandeleest, J., Atwill, E., & McCowan, B. (2016). Social buffering and contact transmission: Network connections have beneficial and detrimental effects among captive rhesus macaques (Macaca mulatta). PeerJ, 4, e2630. https://doi.org/10.7717/peerj.2630
Balasubramaniam, K. N., Bliss-Moreau, E., Beisner, B. A., Marty, P. R., Kaburu, S. S. K., & McCowan, B. J. (2021). Addressing the challenges of research on human-wildlife interactions using the concept of coupled natural and human systems. Biological Conservation, 257. https://doi.org/10.1016/j.biocon.2021.109095
Balasubramaniam, K. N., Dittmar, K., Berman, C. M., Butovskaya, M., Cooper, M. A., Majolo, B., Ogawa, H., Schino, G., Thierry, B., & de Waal, F. B. M. (2012). Hierarchical steepness and phylogenetic models: Phylogenetic signals in Macaca. Animal Behaviour, 83(5), 1207-1218. https://doi.org/10.1016/j.anbehav.2012.02.012
Balasubramaniam, K. N., Kaburu, S. S. K., Marty, P. R., Beisner, B. A., Bliss-Moreau, E., Arlet, M., Ruppert, N., Ismail, A., Anuar Mohd Sah, S., Mohan, L., Rattan, S., Kodandaramaiah, U., & McCowan, B. (2021). Data from: Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. Dryad Digital Repository, https://doi.org/10.25338/B83G9N
Balasubramaniam, K. N., Marty, P. R., Arlet, M. E., Beisner, B. A., Kaburu, S. S. K., Bliss-Moreau, E., Kodandaramaiah, U., & McCowan, B. J. (2020). Impact of anthropogenic factors on affiliative behaviors among bonnet macaques. American Journal of Physical Anthropology, 171, 704-717. https://doi.org/10.1002/ajpa.24013
Balasubramaniam, K. N., Marty, P. R., Samartino, S., Sobrino, A., Gill, T., Ismail, M., Saha, R., Beisner, B. A., Kaburu, S. S. K., Bliss-Moreau, E., Arlet, M. E., Ruppert, N., Ismail, A., Sah, S. M., Mohan, L., Rattan, S. K., Kodandaramaiah, U., & McCowan, B. (2020). Impact of individual demographic and social factors on human-wildlife interactions: A comparative study of three macaque species. Scientific Reports, 10(1), 1-16. https://doi.org/10.1038/s41598-020-78881-3
Beisner, B. A., & McCowan, B. (2013). Policing in nonhuman primates: Partial interventions serve a prosocial conflict management function in rhesus macaques. PLoS ONE, 8(10). https://doi.org/10.1371/journal.pone.0077369
Belton, L. E., Cameron, E. Z., & Dalerum, F. (2018). Social networks of spotted hyenas in areas of contrasting human activity and infrastructure. Animal Behaviour, 135, 13-23. https://doi.org/10.1016/j.anbehav.2017.10.027
Berger-Tal, O., Blumstein, D. T., Carroll, S., Fisher, R. N., Mesnick, S. L., Owen, M. A., Saltz, D., Claire, C. C., & Swaisgood, R. R. (2016). A systematic survey of the integration of animal behavior into conservation. Conservation Biology, 30(4), 744-753. https://doi.org/10.1111/cobi.12654
Bhattacharjee, D., & Bhadra, A. (2020). Humans dominate the social interaction networks of urban free-ranging dogs in India. Frontiers in Psychology, 11(August), 1-11. https://doi.org/10.3389/fpsyg.2020.02153
Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555-564. https://doi.org/10.1016/j.socnet.2007.04.002
Bond, M. L., König, B., Lee, D. E., Ozgul, A., & Farine, D. R. (2020). Proximity to humans affects local social structure in a giraffe metapopulation. Journal of Animal Ecology, 90, 212-221. https://doi.org/10.1111/1365-2656.13247
Brent, L. J. N. (2015). Friends of friends: Are indirect connections in social networks important to animal behaviour? Animal Behaviour, 103, 211-222. https://doi.org/10.1016/j.physbeh.2017.03.040
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference. Springer.
Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioural Ecology and Sociobiology, 65, 23-35. https://doi.org/10.1007/s00265-010-1029-6
Carter, N. H., Vina, A., Hull, V., McConnell, W. J., Axinn, W., Ghimire, D., & Liu, J. (2014). Coupled human and natural systems approach to wildlife research and conservation. Ecology and Society, https://doi.org/10.5751/es-06881-190343
Chilvers, B. L., & Corkeron, P. J. (2001). Trawling and bottlenose dolphins' social structure. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(March), 1901-1905. https://doi.org/10.1098/rspb.2001.1732
Chiyo, P. I., Moss, C. J., & Alberts, S. C. (2012). The influence of life history milestones and association networks on crop-raiding behavior in male African elephants. PLoS ONE, 7(2). https://doi.org/10.1371/journal.pone.0031382
Clutton-Brock, T. (2017). Reproductive competition and sexual selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, 20160310.
Craft, M. E. (2015). Infectious disease transmission and contact networks in wildlife and livestock. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1669), https://doi.org/10.1098/rstb.2014.0107
Croft, D. P., James, R., & Krause, J. (2008). Exploring animal social networks. Princeton University Press.
Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. InterJournal Complex Systems, 1695, 1-9.
Cunningham, A. A., Daszak, P., & Wood, J. L. N. (2017). One Health, emerging infectious diseases and wildlife: Two decades of progress? Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1725), 20160167. https://doi.org/10.1098/rstb.2016.0167
Drewe, J. A., & Perkins, S. E. (2015). Disease transmission in animal social networks. In J. Krause, R. James, D. W. Franks, & D. P. Croft (Eds.), Animal social networks (pp. 95-110). Press, Oxford University.
Farine, D. R. (2017). A guide to null models for animal social network analysis. Methods in Ecology and Evolution, 8(10), 1309-1320. https://doi.org/10.1111/2041-210X.12772
Farine, D. R., & Carter, G. G. (2020). Permutation tests for hypothesis testing with animal social data: Problems and potential solutions. BioRxiv. https://doi.org/10.1101/2020.08.02.232710
Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting animal social network analysis. Journal of Animal Ecology, 84(5), 1144-1163. https://doi.org/10.1111/1365-2656.12418
Finn, K., Silk, M. J., Porter, M. A., & Pinter-Wollman, N. (2019). The use of multi-layer network analysis in animal behavior. Animal Behaviour, 149, 7-22.
Fuentes, A. (2012). Ethnoprimatology and the anthropology of the human-primate interface. Annual Review of Anthropology, 41(1), 101-117. https://doi.org/10.1146/annurev-anthro-092611-145808
Fujii, K., Jin, J., Vandeleest, J., Shev, A., Beisner, B., McCowan, B., & Fushing, H. (2015). Perc: Using percolation and conductance to find information flow certainty in a direct network. R package version 0.1. Retrieved from https://cran.r-project.org/web/packages/Perc/index.html
Funkhouser, J. A., Mayhew, J. A., Sheeran, L. K., Mulcahy, J. B., & Li, J. H. (2018). Comparative investigations of social context-dependent dominance in captive chimpanzees (Pan troglodytes) and wild Tibetan macaques (Macaca thibetana). Scientific Reports, 8, 1-15. https://doi.org/10.1038/s41598-018-32243-2
Gumert, M. D. (2011). A common monkey of Southeast Asia: Longtailed macaque populations, ethnophoresy, and their occurrence in human environments. In M. D. Gumert, A. Fuentes, & L. Jones-Engel (Eds.), Monkeys on the edge: Ecology and management of longtailed macaques and their interface with humans (pp. 3-43). Cambridge University Press.
Harrison, X. A., Donaldson, L., Correa-Cano, M. E., Evans, J., Fisher, D. N., Goodwin, C. E. D., Robinson, B. S., Hodgson, D. J., & Inger, R. (2018). A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ, 6, e4794. https://doi.org/10.7717/peerj.4794
Hasegawa, M., Kishino, H., & Yano, T.-A. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160-174. https://doi.org/10.1007/BF02101694
Kaburu, S. S. K., Beisner, B. A., Balasubramaniam, K. N., Marty, P. R., Bliss-Moreau, E., Mohan, L., Rattan, S. K., Arlet, M. E., Atwill, E. R., & McCowan, B. (2019). Interactions with humans impose time constraints on urban-dwelling rhesus macaques (Macaca mulatta). Behaviour, 156, 1255-1282. https://doi.org/10.1163/1568539X-00003565
Kaburu, S. S. K., Marty, P. R., Beisner, B., Balasubramaniam, K. N., Bliss-Moreau, E., Kaur, K., Mohan, L., & McCowan, B. (2019). Rates of human-macaque interactions affect grooming behavior among urban-dwelling rhesus macaques (Macaca mulatta). American Journal of Physical Anthropology, 168(1), 92-103. https://doi.org/10.1002/ajpa.23722
Krause, J., James, R., Franks, D. W., & Croft, D. P. (2014). Animal social networks. Oxford University Press.
Lischka, S. A., Teel, T. L., Johnson, H. E., Reed, S. E., Breck, S., Don Carlos, A., & Crooks, K. R. (2018). A conceptual model for the integration of social and ecological information to understand human-wildlife interactions. Biological Conservation, 225, 80-87. https://doi.org/10.1016/j.biocon.2018.06.020
Magnusson, A., Skaug, H., Nielsen, A., Berg, C., Kristensen, K., Maechler, M., van Bentham, K., Sadat, N., Bolker, B., & Brooks, M. (2019). Package ‘glmmTMB’. Retrieved from https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf
Marty, P. R., Balasubramaniam, K. N., Kaburu, S. S. K., Hubbard, J., Beisner, B., Bliss-Moreau, E., Ruppert, N., Arlet, M. E., Sah, S. A. M., Ismail, A., Mohan, L., Rattan, S. K., Kodandaramaiah, U., & McCowan, B. (2020). Individuals in urban dwelling primate species face unequal benefits associated with living in an anthropogenic environment. Primates, 61, 249-255. https://doi.org/10.1007/s10329-019-00775-4
Marty, P. R., Beisner, B., Kaburu, S. S. K., Balasubramaniam, K., Bliss-Moreau, E., Ruppert, N., Sah, S. A. M., Ismail, A., Arlet, M. E., Atwill, E. R., & McCowan, B. (2019). Time constraints imposed by anthropogenic environments alter social behaviour in longtailed macaques. Animal Behaviour, 150, 157-165. https://doi.org/10.1016/j.anbehav.2019.02.010
Mckinney, T. (2015). A classification system for describing anthropogenic influence on nonhuman primate populations. American Journal of Primatology, 77(7), 715-726. https://doi.org/10.1002/ajp.22395
Morrow, K. S., Glanz, H., Ngakan, P. O., & Riley, E. P. (2019). Interactions with humans are jointly influenced by life history stage and social network factors and reduce group cohesion in moor macaques (Macaca maura). Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-56288-z
Newman, M. E. J. (2003). Mixing patterns in networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 67(2), 13. https://doi.org/10.1103/PhysRevE.67.026126
Nunn, C. L., Craft, M. E., Gillespie, T. R., Schaller, M., & Kappeler, P. (2015). The sociality-health-fitness nexus: Synthesis, conclusions and future directions. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140115. https://doi.org/10.1098/rstb.2014.0115
Nyhus, P. J. (2016). Human-wildlife conflict and coexistence. The Annual Review of Environment and Resources, 41, 143-171. https://doi.org/10.1146/annurev-environ-110615-085634
Priston, N. E. C., & McLennan, M. R. (2013). Managing humans, managing macaques: Human-macaque conflict in Asia and Africa. In The macaque connection: Cooperation and conflict between humans and macaques. https://doi.org/10.1007/978-1-4614-3967-7_14
Puga-Gonzalez, I., Sueur, C., & Sosa, S. (2020). Null models for animal social network analysis and data collected via focal sampling: Pre-network or node network permutation? Methods in Ecology and Evolution, 12, 22-32. https://doi.org/10.1111/2041-210X.13400
Quinn, G. P., & Keough, M. J. (2002). Experimental designs and data analysis for biologists. Cambridge University Press.
Radhakrishna, S., & Sinha, A. (2011). Less than wild? Commensal primates and wildlife conservation. Journal of Biosciences, 36(5), 749-753. https://doi.org/10.1007/s12038-011-9145-7
Roos, C., & Zinner, D. (2018). Primate phylogeny. In M. Bezanson, C. J. Campbell, S. Elton, A. Estrada, A. Di Fiore, L. Jones-Engel, J. E. Loudon, K. C. MacKinnon, A. I. Nekaris, E. P. Riley, S. R. Ross, C. M. Sanz, R. W. Sussman, B. Thierry, & A. Fuentes (Eds.), The international encyclopedia of primatology. John Wiley & Sons Inc.
Rushmore, J., Caillaud, D., Hall, R. J., Stumpf, R. M., Meyers, L. A., & Altizer, S. (2014). Network-based vaccination improves prospects for disease control in wild chimpanzees. Journal of the Royal Society, Interface, 11, 20140349. https://doi.org/10.1098/rsif.2014.0349
Shutt, K., MacLarnon, A., Heistermann, M., & Semple, S. (2007). Grooming in Barbary macaques: Better to give than to receive? Biology Letters, 3(3), 231-233. https://doi.org/10.1098/rsbl.2007.0052
Silk, J. B., Alberts, S. C., & Altmann, J. (2003). Social bonds of female baboons enhance infant survival. Science, 302, 1231-1234. https://doi.org/10.1126/science.1088580
Snijders, L., Blumstein, D. T., Stanley, C. R., & Franks, D. W. (2017). Animal social network theory can help wildlife conservation. Trends in Ecology & Evolution, 32(8), 567-577. https://doi.org/10.1016/j.tree.2017.05.005
Sosa, S., Jacoby, D. M. P., Lihoreau, M., & Sueur, C. (2021). Animal social networks: Towards an integrative framework embedding social interactions, space and time. Methods in Ecology & Evolution, 12, 4-9. https://doi.org/10.1111/2041-210X.13539
Sosa, S., Sueur, C., & Puga-Gonzales, I. (2021). Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods in Ecology & Evolution, 12, 10-21. https://doi.org/10.1111/2041-210X.13366
Sterck, E. H. M., Watts, D. P., & van Schaik, C. P. (1997). The evolution of female social relationships in nonhuman primates. Behavioral Ecology and Sociobiology, 41(5), 291-309. https://doi.org/10.1007/s002650050390
Thierry, B. (2007). Unity in diversity: Lessons from macaque societies. Evolutionary Anthropology, 16(6), 224-238. https://doi.org/10.1002/evan.20147
Townsend, A. K., Hawley, D. M., Stephenson, J. F., & Williams, K. E. G. (2020). Emerging infectious disease and the challenges of social distancing in human and non-human animals: EIDs and sociality. Proceedings of the Royal Society B: Biological Sciences, 287(1932). https://doi.org/10.1098/rspb.2020.1039
Vandeleest, J. J., Beisner, B. A., Hannibal, D. L., Nathman, A. C., Capitanio, J. P., Hsieh, F., Atwill, E. R., & McCowan, B. (2016). Decoupling social status and status certainty effects on health in macaques: A network approach. PeerJ, 4, e2394. https://doi.org/10.7717/peerj.2394
Weiss, M. N., Franks, D. W., Brent, L. J. N., Ellis, S., Silk, M. J., & Croft, D. P. (2020). Common permutations of animal social network data are not appropriate for hypothesis testing using linear models. BioRxiv, 1-26.
Wey, T., Blumstein, D. T., Shen, W., & Jordán, F. (2008). Social network analysis of animal behaviour: A promising tool for the study of sociality. Animal Behaviour, 75(2), 333-344. https://doi.org/10.1016/j.anbehav.2007.06.020
Williams, R., & Lusseau, D. (2006). A killer whale social network is vulnerable to targeted removals. Biology Letters, 2, 497-500. https://doi.org/10.1098/rsbl.2006.0510
Wong, B. B. M., & Candolin, U. (2015). Behavioral responses to changing environments. Behavioral Ecology, 26(3), 665-673. https://doi.org/10.1093/beheco/aru183