A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions.

YOLO and DeepSORT deep learning dense emulsions lattice Boltzmann approach object recognition and tracking

Journal

Philosophical transactions. Series A, Mathematical, physical, and engineering sciences
ISSN: 1471-2962
Titre abrégé: Philos Trans A Math Phys Eng Sci
Pays: England
ID NLM: 101133385

Informations de publication

Date de publication:
18 Oct 2021
Historique:
entrez: 30 8 2021
pubmed: 31 8 2021
medline: 31 8 2021
Statut: ppublish

Résumé

We present a deep learning-based object detection and object tracking algorithm to study droplet motion in dense microfluidic emulsions. The deep learning procedure is shown to correctly predict the droplets' shape and track their motion at competitive rates as compared to standard clustering algorithms, even in the presence of significant deformations. The deep learning technique and tool developed in this work could be used for the general study of the dynamics of biological agents in fluid systems, such as moving cells and self-propelled microorganisms in complex biological flows. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.

Identifiants

pubmed: 34455844
doi: 10.1098/rsta.2020.0400
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

20200400

Auteurs

Mihir Durve (M)

Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.
Quantitative Life Sciences Unit, The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste 34151, Italy.

Fabio Bonaccorso (F)

Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.
Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, Italy.
Department of Physics and INFN, University of Rome Tor Vergata, Via della Ricerca Scientifica, 1 00133, Rome, Italy.

Andrea Montessori (A)

Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.

Marco Lauricella (M)

Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.

Adriano Tiribocchi (A)

Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.
Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, Italy.

Sauro Succi (S)

Center for Life Nano Science@La Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161 Roma, Italy.
Istituto per le Applicazioni del Calcolo CNR, via dei Taurini 19, Rome, Italy.
Institute for Applied Computational Science, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA.

Classifications MeSH