Extracellular vesicles mediated exocytosis of antisense peptide nucleic acids.

PNAs TEVs endocytic recycling exocytosis peptide nucleic acids tumor-derived extracellular vesicles

Journal

Molecular therapy. Nucleic acids
ISSN: 2162-2531
Titre abrégé: Mol Ther Nucleic Acids
Pays: United States
ID NLM: 101581621

Informations de publication

Date de publication:
03 Sep 2021
Historique:
received: 19 03 2021
accepted: 27 07 2021
entrez: 30 8 2021
pubmed: 31 8 2021
medline: 31 8 2021
Statut: epublish

Résumé

Peptide nucleic acids (PNAs), a synthetic DNA mimic, have been extensively utilized for antisense- and antigene-based biomedical applications. Significant efforts have been made to increase the cellular uptake of PNAs, but here we examined relatively unexplored aspects of intracellular trafficking and endocytic recycling of PNAs. For proof-of-concept, we used anti-microRNA (miR) PNA targeting miR-155. The sub-cellular localization of PNA was studied via confocal and flow-cytometry-based assays in HeLa cells. A comprehensive characterization of PNA-containing extracellular vesicles revealed spherical morphology, negative surface charge density, and the presence of tetraspanin markers. Most importantly, we investigated rab11a and rab27b GTPases' role in regulating the exocytosis of PNAs. Organelle staining, followed by confocal imaging, showed higher localization of PNA in lysosomes. Gene-expression analysis established the enhanced functional activity of PNA after inhibition of endocytic recycling. Multiple studies report the exocytosis of single-stranded oligonucleotides, short interfering RNAs (siRNAs), and nanocarriers. To our knowledge, this is the first mechanistic study to establish that PNA undergoes endocytic recycling and exocytosis out of tumor cells. The results presented here can serve as a platform to develop and optimize strategies for improving the therapeutic efficacy of PNAs by avoiding the recycling pathways.

Identifiants

pubmed: 34458012
doi: 10.1016/j.omtn.2021.07.018
pii: S2162-2531(21)00186-4
pmc: PMC8379631
doi:

Types de publication

Journal Article

Langues

eng

Pagination

302-315

Informations de copyright

© 2021 The Author(s).

Déclaration de conflit d'intérêts

The authors declare no competing interests.

Références

Biochem Pharmacol. 1994 Sep 15;48(6):1310-3
pubmed: 7945427
Bioconjug Chem. 2006 May-Jun;17(3):750-8
pubmed: 16704214
Nat Chem Biol. 2005 Sep;1(4):210-5
pubmed: 16408037
Cell. 1984 Jul;37(3):789-800
pubmed: 6204769
Trends Cell Biol. 2017 Mar;27(3):172-188
pubmed: 27979573
Nat Cell Biol. 2008 Dec;10(12):1470-6
pubmed: 19011622
Nat Rev Cancer. 2020 Dec;20(12):697-709
pubmed: 32958932
Nat Cell Biol. 2010 Jan;12(1):19-30; sup pp 1-13
pubmed: 19966785
Artif DNA PNA XNA. 2011 Jul-Dec;2(3):90-9
pubmed: 22567192
Proc Natl Acad Sci U S A. 2015 Mar 24;112(12):E1433-42
pubmed: 25713383
Cancer Res. 2016 Apr 15;76(8):2071-5
pubmed: 27032418
J Org Chem. 2011 Jul 15;76(14):5614-27
pubmed: 21619025
J Am Chem Soc. 2014 May 28;136(21):7726-33
pubmed: 24841494
J Clin Med. 2020 Jun 26;9(6):
pubmed: 32604776
Nat Rev Cancer. 2009 Jan;9(1):40-55
pubmed: 19078974
J Virol. 1998 Dec;72(12):9645-55
pubmed: 9811698
Nat Commun. 2018 Jun 26;9(1):2481
pubmed: 29946143
Int J Biochem Cell Biol. 2012 Jan;44(1):11-5
pubmed: 22024155
Ther Adv Neurol Disord. 2018 Mar 13;11:1756285618754459
pubmed: 29568328
MethodsX. 2020 Oct 22;7:101115
pubmed: 33145187
ACS Nano. 2018 Nov 27;12(11):10817-10832
pubmed: 30346694
J Control Release. 2019 Jun 10;303:67-76
pubmed: 30980852
J Cell Physiol. 1993 Jun;155(3):579-94
pubmed: 8491793
Nat Biotechnol. 2011 Apr;29(4):341-5
pubmed: 21423189
Drug Des Devel Ther. 2019 May 06;13:1515-1525
pubmed: 31118583
Biochemistry. 2007 Jun 26;46(25):7581-9
pubmed: 17536840
Nucleic Acids Res. 2005 Nov 30;33(21):6837-49
pubmed: 16321967
Nat Biotechnol. 2020 Apr;38(4):385
pubmed: 32265559
Nat Biotechnol. 2013 Jul;31(7):638-46
pubmed: 23792630
Nucleic Acids Res. 2021 Jan 25;49(2):713-725
pubmed: 33406227
J Biomed Sci. 2016 Oct 6;23(1):70
pubmed: 27716280
Chembiochem. 2012 Jun 18;13(9):1327-37
pubmed: 22639449
Mol Ther. 2016 Dec;24(12):2100-2108
pubmed: 27633442
J Control Release. 2020 Nov 10;327:406-419
pubmed: 32835710
Curr Cancer Drug Targets. 2013 Oct;13(8):867-78
pubmed: 23822752
World J Gastroenterol. 2012 Apr 21;18(15):1806-13
pubmed: 22553406
Artif DNA PNA XNA. 2013 Apr-Jun;4(2):49-57
pubmed: 23954968
Mol Ther Nucleic Acids. 2017 Dec 15;9:111-119
pubmed: 29246289
Mol Biol Cell. 1998 Nov;9(11):3241-57
pubmed: 9802909
Proc Natl Acad Sci U S A. 1998 May 26;95(11):6187-92
pubmed: 9600939
Gastroenterology. 2007 Aug;133(2):647-58
pubmed: 17681183
Gastroenterol Res Pract. 2014;2014:913106
pubmed: 25580113
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1695-704
pubmed: 22685206
Nat Protoc. 2006;1(1):436-43
pubmed: 17406266
Biochem Pharmacol. 2021 Jul;189:114432
pubmed: 33513339
J Pept Sci. 1995 May-Jun;1(3):175-83
pubmed: 9222994
Sci Rep. 2017 Sep 12;7(1):11271
pubmed: 28900146
Nat Cell Biol. 2007 Jun;9(6):654-9
pubmed: 17486113
Nucleic Acids Res. 2020 Dec 2;48(21):11827-11844
pubmed: 32808038
Bioconjug Chem. 2010 Oct 20;21(10):1902-11
pubmed: 20879728
Proc Natl Acad Sci U S A. 2016 Feb 23;113(8):E968-77
pubmed: 26858453
J Am Chem Soc. 2009 Sep 2;131(34):12088-90
pubmed: 19663424
Nat Rev Mol Cell Biol. 2004 Feb;5(2):121-32
pubmed: 15040445
Mol Ther. 2004 Dec;10(6):1011-22
pubmed: 15564133
J Natl Cancer Inst. 2010 Jun 16;102(12):866-80
pubmed: 20484105
Nat Commun. 2016 Oct 26;7:13304
pubmed: 27782131
J Biol Chem. 1997 May 23;272(21):13929-36
pubmed: 9153255
J Cell Biol. 1983 Jan;96(1):1-27
pubmed: 6298247
J Nanobiotechnology. 2019 Jan 25;17(1):16
pubmed: 30683120
Curr Gene Ther. 2014;14(5):331-42
pubmed: 25174576
Nat Cell Biol. 2019 Jan;21(1):9-17
pubmed: 30602770
Dev Cell. 2019 May 6;49(3):347-360
pubmed: 31063754
Nucleic Acids Res. 2016 Sep 6;44(15):7314-30
pubmed: 27378781
J Cell Biol. 2000 Dec 11;151(6):1207-20
pubmed: 11121436
Nature. 2015 Feb 5;518(7537):107-10
pubmed: 25409146
Yale J Biol Med. 2017 Dec 19;90(4):583-598
pubmed: 29259523
Traffic. 2009 Oct;10(10):1528-42
pubmed: 19682328
J Nanobiotechnology. 2019 Apr 22;17(1):57
pubmed: 31010426
Clin Chem. 2013 Jan;59(1):325-6
pubmed: 22529108
Biomed Rep. 2016 Oct;5(4):395-402
pubmed: 27699004
J Clin Bioinforma. 2013 Sep 28;3(1):17
pubmed: 24073882
RNA. 2017 Jan;23(1):58-69
pubmed: 27742909
ACS Chem Biol. 2013 Feb 15;8(2):345-52
pubmed: 23113581
Nat Struct Biol. 1997 Feb;4(2):98-101
pubmed: 9033585
J Drug Target. 2013 Jan;21(1):27-43
pubmed: 23163768
Nat Biotechnol. 2013 Jul;31(7):653-8
pubmed: 23792629
Nat Biotechnol. 2017 Mar;35(3):230-237
pubmed: 28244996
Mol Ther. 2012 May;20(5):984-93
pubmed: 22334015
Methods Mol Biol. 2014;1050:1-12
pubmed: 24297346
Pancreas. 2017 Oct;46(9):1173-1179
pubmed: 28902788

Auteurs

Shipra Malik (S)

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.

W Mark Saltzman (WM)

Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA.

Raman Bahal (R)

Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA.

Classifications MeSH