Single-cell omics: Overview, analysis, and application in biomedical science.
bioinformatics
epigenomics
genomics
haematology
multiomics
proteomics
single-cell methods
transcriptomics
Journal
Journal of cellular biochemistry
ISSN: 1097-4644
Titre abrégé: J Cell Biochem
Pays: United States
ID NLM: 8205768
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
revised:
26
07
2021
received:
04
06
2021
accepted:
09
08
2021
pubmed:
31
8
2021
medline:
15
3
2022
entrez:
30
8
2021
Statut:
ppublish
Résumé
Single-cell sequencing methods provide the highest resolution insight into cellular heterogeneity. Owing to their rapid growth and decreasing cost, they are now widely accessible to scientists worldwide. Single-cell technologies enable analysis of a large number of cells, making them powerful tools to characterise rare cell types and refine our understanding of diverse cell states. Moreover, single-cell application in biomedical sciences helps to unravel mechanisms related to disease pathogenesis and outcome. In this Viewpoint, we briefly describe existing single-cell methods (genomics, transcriptomics, epigenomics, proteomics, and mulitomics), comment on available analysis tools, and give examples of method applications in the biomedical field.
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1571-1578Informations de copyright
© 2021 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals LLC.
Références
Chen G, Ning B, Shi T. Single-Cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317. https://doi.org/10.3389/fgene.2019.00317
Method of the Year 2019: Single-cell multimodal omics. Method of the Year 2019: single-cell multimodal omics. Nature Methods. 2020;17(1):1-1. https://doi.org/10.1038/s41592-019-0703-5
Aldridge S, Teichmann SA. Single cell transcriptomics comes of age. Nat Commun. 2020;11(1):4307. https://doi.org/10.1038/s41467-020-18158-5
Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med. 2020;52(9):1428-1442. https://doi.org/10.1038/s12276-020-0420-2
Paolillo C, Londin E, Fortina P. Single-cell genomics. Clin Chem. 2019;65(8):972-985. https://doi.org/10.1373/clinchem.2017.283895
Shema E, Bernstein BE, Buenrostro JD. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nature Genet. 2018;51(1):19-25. https://doi.org/10.1038/s41588-018-0290-x
Luquette LJ, Bohrson CL, Sherman MA, Park PJ. Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance. Nat Commun. 2019;10(1):1-14. https://doi.org/10.1038/s41467-019-11857-8
Mallory XF, Edrisi M, Navin N, Nakhleh L. Methods for copy number aberration detection from single-cell DNA-sequencing data. Genome Biol. 2020;21(1):208. https://doi.org/10.1186/s13059-020-02119-8
Woodworth MB, Girskis KM, Walsh CA. Building a lineage from single cells: genetic techniques for cell lineage tracking. Nat Rev Genet. 2017;18(4):230-244. https://doi.org/10.1038/nrg.2016.159
Kashima Y, Sakamoto Y, Kaneko K, Seki M, Suzuki Y, Suzuki A. Single-cell sequencing techniques from individual to multiomics analyses. Exp Mol Med. 2020;52(9):1419-1427. https://doi.org/10.1038/s12276-020-00499-2
Kester L, van Oudenaarden A. Single-cell transcriptomics meets lineage tracing. Cell Stem Cell. 2018;23(2):166-179. https://doi.org/10.1016/j.stem.2018.04.014
Liu J, Adhav R, Xu X. Current progresses of single cell DNA sequencing in breast cancer research. Int J Biol Sci. 2017;13(8):949-960. https://doi.org/10.7150/ijbs.19627
Zahn H, Steif A, Laks E, et al. Scalable whole-genome single-cell library preparation without preamplification. Nature Methods. 2017;14(2):167-173. https://doi.org/10.1038/nmeth.4140
Lähnemann D, Köster J, Szczurek E, et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21(1):31. https://doi.org/10.1186/s13059-020-1926-6
Mincarelli L, Lister A, Lipscombe J, Macaulay IC. Defining cell identity with single-cell omics. Proteomics. 2018;18(18):e1700312. https://doi.org/10.1002/pmic.201700312
Tang F, Barbacioru C, Wang Y, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nature Methods. 2009;6(5):377-382. https://doi.org/10.1038/nmeth.1315
Giladi A, Amit I. Single-cell genomics: a stepping stone for future immunology discoveries. Cell. 2018;172(1-2):14-21. https://doi.org/10.1016/j.cell.2017.11.011
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161(5):1202-1214. https://doi.org/10.1016/j.cell.2015.05.002
Klein AM, Mazutis L, Akartuna I, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161(5):1187-1201. https://doi.org/10.1016/j.cell.2015.04.044
Zheng GXY, Terry JM, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8(1):14049. https://doi.org/10.1038/ncomms14049
Gierahn TM, Wadsworth MH, 2nd, Hughes TK, et al. Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nature Methods. 2017;14(4):395-398. https://doi.org/10.1038/nmeth.4179
Natarajan KN. Single-cell tagged reverse transcription (STRT-Seq). Methods Mol Biol. 2019;1979:133-153. https://doi.org/10.1007/978-1-4939-9240-9_9
Hagemann-Jensen M, Ziegenhain C, Chen P, et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq. 3. Nature Biotechnol. 2020;38(6):708-714. https://doi.org/10.1038/s41587-020-0497-0
Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq. 2. Nat Protoc. 2014;9(1):171-181. https://doi.org/10.1038/nprot.2014.006
Ramsköld D, Luo S, Wang Y-C, et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnol. 2012;30(8):777-782. https://doi.org/10.1038/nbt.2282
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med. 2018;50(8):1-14. https://doi.org/10.1038/s12276-018-0071-8
Hayashi T, Ozaki H, Sasagawa Y, Umeda M, Danno H, Nikaido I. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs. Nat Commun. 2018;9(1):1-16. https://doi.org/10.1038/s41467-018-02866-0
Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13(4):599-604. https://doi.org/10.1038/nprot.2017.149
van den Brink SC, Sage F, Vértesy Á, et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nature Methods. 2017;14(10):935-936. https://doi.org/10.1038/nmeth.4437
Lambrechts D, Wauters E, Boeckx B, et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nature Med. 2018;24(8):1277-1289. https://doi.org/10.1038/s41591-018-0096-5
Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489-499. https://doi.org/10.1038/s41586-019-1411-0
Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell. 2007;128(4):669-681. https://doi.org/10.1016/j.cell.2007.01.033
Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015;523(7561):486-490. https://doi.org/10.1038/nature14590
Satpathy AT, Granja JM, Yost KE, et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nature Biotechnol. 2019;37(8):925-936. https://doi.org/10.1038/s41587-019-0206-z
Xu W, Wen Y, Liang Y, et al. A plate-based single-cell ATAC-seq workflow for fast and robust profiling of chromatin accessibility. Nature Protocols. 2021;16:4084-4107. https://doi.org/10.1038/s41596-021-00583-5
Grosselin K, Durand A, Marsolier J, et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nature Genet. 2019;51(6):1060-1066. https://doi.org/10.1038/s41588-019-0424-9
Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nature Biotechnol. 2021;39(7):825-835. https://doi.org/10.1038/s41587-021-00869-9
Ahn J, Heo S, Lee J, Bang D. Introduction to single-cell DNA methylation profiling methods. Biomolecules. 2021;11(7):1013. https://doi.org/10.3390/biom11071013
Smallwood SA, Lee HJ, Angermueller C, et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nature Methods. 2014;11(8):817-820. https://doi.org/10.1038/nmeth.3035
Clark, S. J., Smallwood, S. A., Lee, H. J., Krueger, F., Reik, W., & Kelsey, G. (2017). Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nature Protocols, 12(3), 534-547. https://doi.org/10.1038/nprot.2016.187
Gu H, Raman AT, Wang X, et al. Smart-RRBS for single-cell methylome and transcriptome analysis. Nature Protocols. 2021;16:4004-4030. https://doi.org/10.1038/s41596-021-00571-9
Guo H, Zhu P, Guo F, et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc. 2015;10(5):645-659. https://doi.org/10.1038/nprot.2015.039
Gadalla R, Noamani B, MacLeod BL, et al. Validation of CyTOF against flow cytometry for immunological studies and monitoring of human cancer clinical trials. Front Oncol. 2019;9:415. https://doi.org/10.3389/fonc.2019.00415
Macaulay IC, Ponting CP, Voet T. Single-cell multiomics: multiple measurements from single cells. Trends in Genetics: TIG. 2017;33(2):155-168. https://doi.org/10.1016/j.tig.2016.12.003
Cao J, Cusanovich DA, Ramani V, et al. Joint profiling of chromatin accessibility and gene expression in thousands of single cells. Science. 2018;361(6409):1380-1385. https://doi.org/10.1126/science.aau0730
Chen S, Lake BB, Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nature Biotechnol. 2019;37(12):1452-1457. https://doi.org/10.1038/s41587-019-0290-0
Clark SJ, Argelaguet R, Kapourani C-A, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat Commun. 2018;9(1):1-9. https://doi.org/10.1038/s41467-018-03149-4
Niemöller C, Wehrle J, Riba J, et al. Bisulfite-free epigenomics and genomics of single cells through methylation-sensitive restriction. Communications Biology. 2021;4(1):1-10. https://doi.org/10.1038/s42003-021-01661-w
Stoeckius M, Hafemeister C, Stephenson W, et al. Simultaneous epitope and transcriptome measurement in single cells. Nature Methods. 2017;14(9):865-868. https://doi.org/10.1038/nmeth.4380
Triana SH, Vonficht D, Jopp-Saile L, et al. Single-cell proteo-genomic reference maps of the hematopoietic system enable the purification and massive profiling of precisely defined cell states. bioRxiv. 2021. https://doi.org/10.1101/2021.03.18.435922
Burgess DJ. Spatial transcriptomics coming of age. Nat Rev Genet. 2019;20(6):317. https://doi.org/10.1038/s41576-019-0129-z
Wang F, Flanagan J, Su N, et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2012;14(1):22-29. https://doi.org/10.1016/j.jmoldx.2011.08.002
Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science. 2015;348(6233):aaa6090. https://doi.org/10.1126/science.aaa6090
Eng C-HL, Lawson M, Zhu Q, et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature. 2019;568(7751):235-239. https://doi.org/10.1038/s41586-019-1049-y
Rodriques SG, Stickels RR, Goeva A, et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363(6434):1463-1467. https://doi.org/10.1126/science.aaw1219
Srivatsan SR, Regier MC, Barkan E, et al. Embryo-scale, single-cell spatial transcriptomics. Science. 2021;373(6550):111-117. https://doi.org/10.1126/science.abb9536
Garcia-Alonso L, Handfield L-F, Roberts K, et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. bioRxiv. 2021. https://doi.org/10.1101/2021.01.02.425073
Stuart T, Satija R. Integrative single-cell analysis. Nat Rev Genet. 2019;20(5):257-272. https://doi.org/10.1038/s41576-019-0093-7
Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75. https://doi.org/10.1186/s13073-017-0467-4
Efremova M, Teichmann SA. Computational methods for single-cell omics across modalities. Nature Methods. 2020;17(1):14-17. https://doi.org/10.1038/s41592-019-0692-4
Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nature Methods. 2014;11(7):740-742. https://doi.org/10.1038/nmeth.2967
Eisenstein M. Single-cell RNA-seq analysis software providers scramble to offer solutions. Nature Biotechnol. 2020;38(3):254-257. https://doi.org/10.1038/s41587-020-0449-8
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nature Biotechnol. 2018;36(5):411-420. https://doi.org/10.1038/nbt.4096
Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15. https://doi.org/10.1186/s13059-017-1382-0
Danese A, Richter ML, Fischer DS, Theis FJ. EpiScanpy: integrated single cell epigenomic analysis. bioRxiv. 2019. https://doi.org/10.1101/648097v1
Jain MS, Polanski K, Conde CD, et al. MultiMAP: dimensionality Reduction and Integration of Multimodal Data. bioRxiv. 2021. https://doi.org/10.1101/2021.02.16.431421
Moreno P., Huang N., Manning J. R., et al. User-friendly, scalable tools and workflows for single-cell RNAseq analysis. Nature Methods. 2021;18(4):327-328. https://doi.org/10.1038/s41592-021-01102-w
Strzelecka PM, Ranzoni AM, Cvejic A. Dissecting human disease with single-cell omics: application in model systems and in the clinic. Dis Models & Mech. 2018;11(11):dmm036525. https://doi.org/10.1242/dmm.036525
Alemany A, Florescu M, Baron CS, Peterson-Maduro J, van Oudenaarden A. Whole-organism clone tracing using single-cell sequencing. Nature. 2018;556(7699):108-112. https://doi.org/10.1038/nature25969
Packer JS, Zhu Q, Huynh C, et al. A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution. Science. 2019;365(6459):eaax1971. https://doi.org/10.1126/science.aax1971
Pijuan-Sala B, Griffiths JA, Guibentif C, et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature. 2019;566(7745):490-495. https://doi.org/10.1038/s41586-019-0933-9
Elmentaite R, Ross ADB, Roberts K, et al. Single-cell sequencing of developing human gut reveals transcriptional links to childhood crohn's disease. Dev Cell. 2020;55(6):771-783 e5. https://doi.org/10.1016/j.devcel.2020.11.010
Mylonas E, Yoshida K, Frick M, et al. Single-cell analysis based dissection of clonality in myelofibrosis. Nat Commun. 2020;11(1):73. https://doi.org/10.1038/s41467-019-13892-x
Velten L, Story BA, Hernández-Malmierca P, et al. Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat Commun. 2021;12(1):1366. https://doi.org/10.1038/s41467-021-21650-1
Lareau CA, Ludwig LS, Muus C, et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nature Biotechnol. 2021;39(4):451-461. https://doi.org/10.1038/s41587-020-0645-6
Rajewsky N, Almouzni G, Gorski SA, et al. LifeTime Community Working Groups LifeTime and improving European healthcare through cell-based interceptive medicine. Nature. 2020;587(7834):377-386. https://doi.org/10.1038/s41586-020-2715-9