Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function.
CAC
CAT
CHG
CHH
CNN
CpG
DNA methylation
HCA
cluster
comparison
hierarchical clustering analysis
human
individual-specific
methylation
methylation patterns
muscle
non-CpG
peripheral blood
tissue-specific
umbilical cord
umbilical cord blood
Journal
Epigenetics
ISSN: 1559-2308
Titre abrégé: Epigenetics
Pays: United States
ID NLM: 101265293
Informations de publication
Date de publication:
06 2022
06 2022
Historique:
pubmed:
1
9
2021
medline:
29
6
2022
entrez:
31
8
2021
Statut:
ppublish
Résumé
DNA methylation (DNAm) in mammals is mostly examined within the context of CpG dinucleotides. Non-CpG DNAm is also widespread across the human genome, but the functional relevance, tissue-specific disposition, and inter-individual variability has not been widely studied. Our aim was to examine non-CpG DNAm in the wider methylome across multiple tissues from the same individuals to better understand non-CpG DNAm distribution within different tissues and individuals and in relation to known genomic regulatory features.DNA methylation in umbilical cord and cord blood at birth, and peripheral venous blood at age 12-13 y from 20 individuals from the Southampton Women's Survey cohort was assessed by Agilent SureSelect methyl-seq. Hierarchical cluster analysis (HCA) was performed on CpG and non-CpG sites and stratified by specific cytosine environment. Analysis of tissue and inter-individual variation was then conducted in a second dataset of 12 samples: eight muscle tissues, and four aliquots of cord blood pooled from two individuals.HCA using methylated non-CpG sites showed different clustering patterns specific to the three base-pair triplicate (CNN) sequence. Analysis of CAC sites with non-zero methylation showed that samples clustered first by tissue type, then by individual (as observed for CpG methylation), while analysis using non-zero methylation at CAT sites showed samples grouped predominantly by individual. These clustering patterns were validated in an independent dataset using cord blood and muscle tissue.This research suggests that CAC methylation can have tissue-specific patterns, and that individual effects, either genetic or unmeasured environmental factors, can influence CAT methylation.
Identifiants
pubmed: 34461806
doi: 10.1080/15592294.2021.1950990
pmc: PMC9235887
doi:
Substances chimiques
Cytosine
8J337D1HZY
DNA
9007-49-2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
653-664Subventions
Organisme : NIA NIH HHS
ID : U24 AG047867
Pays : United States
Organisme : Medical Research Council
ID : MC_UU_12011/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_A620_1014
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UU_12011/4
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_21003
Pays : United Kingdom
Organisme : Medical Research Council
ID : G0400491
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U147585819
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_21000
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U147585827
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U147585824
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_21001
Pays : United Kingdom
Références
Epigenetics. 2018;13(9):941-958
pubmed: 30232931
Nat Ecol Evol. 2021 Mar;5(3):369-378
pubmed: 33462491
Br J Nutr. 2008 Aug;100(2):278-82
pubmed: 18186951
Acta Physiol (Oxf). 2015 Jan;213(1):39-59
pubmed: 25345837
Nature. 2008 Mar 13;452(7184):215-9
pubmed: 18278030
Int J Mol Sci. 2019 Dec 12;20(24):
pubmed: 31842376
Biochem Biophys Res Commun. 1987 Jun 15;145(2):888-94
pubmed: 3593377
Genes (Basel). 2017 May 23;8(6):
pubmed: 28545252
Nucleic Acids Res. 2013 Jan;41(2):738-45
pubmed: 23180759
Calcif Tissue Int. 2018 Sep;103(3):237-245
pubmed: 29589060
J Nutr. 2005 Jun;135(6):1382-6
pubmed: 15930441
Cell Cycle. 2010 Oct 1;9(19):3965-76
pubmed: 20935518
BMC Geriatr. 2010 Jun 29;10:43
pubmed: 20587018
Genome Res. 2010 Mar;20(3):320-31
pubmed: 20133333
EBioMedicine. 2017 May;19:60-72
pubmed: 28473239
Epigenetics. 2016;11(1):36-48
pubmed: 26786415
Epigenetics. 2014 Jun;9(6):823-8
pubmed: 24717538
Science. 2018 Mar 9;359(6380):1166-1170
pubmed: 29590048
BMC Bioinformatics. 2016 Mar 02;17 Suppl 4:69
pubmed: 26961371
Science. 2013 Aug 9;341(6146):1237905
pubmed: 23828890
Int J Epidemiol. 2006 Feb;35(1):42-8
pubmed: 16195252
Genome Biol. 2011 Jul 06;12(7):R62
pubmed: 21733148
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6800-6
pubmed: 25739960
Nat Genet. 2007 Apr;39(4):442-3
pubmed: 17392803
PLoS Genet. 2010 Sep 09;6(9):e1001106
pubmed: 20838592
Cell. 1999 Oct 29;99(3):247-57
pubmed: 10555141
Epigenetics. 2020 Aug;15(8):781-799
pubmed: 32019393
Lancet Diabetes Endocrinol. 2017 Jan;5(1):53-64
pubmed: 27743978
Nature. 2009 Nov 19;462(7271):315-22
pubmed: 19829295
Nature. 2007 May 24;447(7143):418-24
pubmed: 17522675
Clin Epigenetics. 2016 Sep 02;8:90
pubmed: 27594927
Cold Spring Harb Perspect Biol. 2012 Jul 01;4(7):a008136
pubmed: 22687277
Nucleic Acids Res. 2005 Oct 13;33(18):5868-77
pubmed: 16224102
Cell Metab. 2009 Sep;10(3):189-98
pubmed: 19723495
Nucleic Acids Res. 1997 Nov 15;25(22):4692-3
pubmed: 9358185
Nat Neurosci. 2014 Feb;17(2):215-22
pubmed: 24362762
Curr Nutr Rep. 2019 Jun;8(2):74-82
pubmed: 30887425
Epigenomics. 2011 Jun;3(3):267-77
pubmed: 22122337
Nucleic Acids Res. 2014 Mar;42(5):3009-16
pubmed: 24343027