Investigation of structural brain correlates of neurological soft signs in individuals at ultra-high risk for psychosis.


Journal

European archives of psychiatry and clinical neuroscience
ISSN: 1433-8491
Titre abrégé: Eur Arch Psychiatry Clin Neurosci
Pays: Germany
ID NLM: 9103030

Informations de publication

Date de publication:
Dec 2021
Historique:
received: 21 02 2021
accepted: 04 07 2021
pubmed: 2 9 2021
medline: 19 2 2022
entrez: 1 9 2021
Statut: ppublish

Résumé

Increased severity of neurological soft signs (NSS) in schizophrenia have been associated with abnormal brain morphology in cerebello-thalamo-cortical structures, but it is unclear whether similar structures underlie NSS prior to the onset of psychosis. The present study investigated the relationship between severity of NSS and grey matter volume (GMV) in individuals at ultra-high risk for psychosis (UHR) stratified for later conversion to psychosis. Structural T1-weighted MRI scans were obtained from 56 antipsychotic-naïve UHR individuals and 35 healthy controls (HC). The UHR individuals had follow-up data (mean follow-up: 5.2 years) to ascertain clinical outcome. Using whole-brain voxel-based morphometry, the relationship between NSS and GMV at baseline was assessed in UHR, HC, as well as individuals who later transitioned (UHR-P, n = 25) and did not transition (UHR-NP, n = 31) to psychosis. NSS total and subscale scores except motor coordination were significantly higher in UHR compared to HC. Higher signs were also found in UHR-P, but not UHR-NP. Total NSS was not associated with GMV in the whole sample or in each group. However, in UHR-P individuals, greater deficits in sensory integration was associated with lower GMV in the left cerebellum, right insula, and right middle frontal gyrus. In conclusion, NSS are present in UHR individuals, particularly those who later transitioned to a psychotic disorder. While these signs show little overall variation with GMV, the association of sensory integration deficits with lower GMV in UHR-P suggests that certain brain areas may be implicated in the development of specific neurological abnormalities in the psychosis prodrome.

Identifiants

pubmed: 34467451
doi: 10.1007/s00406-021-01300-9
pii: 10.1007/s00406-021-01300-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1475-1485

Subventions

Organisme : National Health and Medical Research Council
ID : 970598
Organisme : National Health and Medical Research Council
ID : 350241
Organisme : National Health and Medical Research Council
ID : 981112
Organisme : NHMRC Senior Principal Research Fellowships
ID : 628386
Organisme : NHMRC Senior Principal Research Fellowships
ID : 1105825
Organisme : Brain and Behavior Research Foundation (NARSAD) Distinguished Investigator Award
ID : 18722
Organisme : NHMRC Principal Research Fellowship
ID : 1136829
Organisme : NHMRC Early Career Fellowship
ID : 1088785
Organisme : NHMRC Senior Research Fellowship
ID : 1137687
Organisme : NHMRC Career Development Fellowship
ID : 1148793
Organisme : NHMRC Investigator Grant
ID : 1177370
Organisme : Brain and Behavior Research Foundation (NARSAD) Young Investigator Award
ID : 21660
Organisme : National Key Research and Development Programme
ID : 2016YFC0906402

Informations de copyright

© 2021. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Hirjak D, Meyer-Lindenberg A, Fritze S, Sambataro F, Kubera KM, Wolf RC (2018) Motor dysfunction as research domain across bipolar, obsessive-compulsive and neurodevelopmental disorders. Neurosci Biobehav Rev 95:315–335. https://doi.org/10.1016/j.neubiorev.2018.09.009
doi: 10.1016/j.neubiorev.2018.09.009 pubmed: 30236781
Peralta V, Cuesta MJ (2017) Motor abnormalities: from neurodevelopmental to neurodegenerative through “functional” (neuro)psychiatric disorders. Schizophr Bull 43(5):956–971. https://doi.org/10.1093/schbul/sbx089
doi: 10.1093/schbul/sbx089 pubmed: 28911050 pmcid: 5581892
Hirjak D, Meyer-Lindenberg A, Sambataro F, Wolf RC (2021) Sensorimotor neuroscience in mental disorders: progress, perspectives and challenges. Schizophr Bull. https://doi.org/10.1093/schbul/sbab053
doi: 10.1093/schbul/sbab053 pubmed: 33940630
Garvey MA, Cuthbert BN (2017) Developing a motor systems domain for the NIMH RDoC program. Schizophr Bull 43(5):935–936. https://doi.org/10.1093/schbul/sbx095
doi: 10.1093/schbul/sbx095 pubmed: 28911051 pmcid: 5581884
Mittal VA, Bernard JA, Northoff G (2017) What can different motor circuits tell us about psychosis? An RDoC perspective. Schizophr Bull 43(5):949–955. https://doi.org/10.1093/schbul/sbx087
doi: 10.1093/schbul/sbx087 pubmed: 28911048 pmcid: 5581904
Buchanan RW, Heinrichs DW (1989) The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res 27:335–350
doi: 10.1016/0165-1781(89)90148-0
Bombin I, Arango C, Buchanan RW (2005) Significance and meaning of neurological signs in schizophrenia: two decades later. Schizophr Bull 31:962–977. https://doi.org/10.1093/schbul/sbi028
doi: 10.1093/schbul/sbi028 pubmed: 15958818
Chan RCK, Gottesman II (2008) Neurological soft signs as candidate endophenotypes for schizophrenia: a shooting star or a Northern star? Neurosci Biobehav Rev 32:957–971. https://doi.org/10.1016/j.neubiorev.2008.01.005
doi: 10.1016/j.neubiorev.2008.01.005 pubmed: 18462797
Chan RCK, Cui H-R, Chu M-Y, Zhang T-H, Wang Y, Wang Y, Li Z, Lui SSY, Wang J-J, Cheung EFC (2018) Neurological soft signs precede the onset of schizophrenia: a study of individuals with schizotypy, ultra-high-risk individuals, and first-onset schizophrenia. Eur Arch Psychiatry Clin Neurosci 268(1):49–56. https://doi.org/10.1007/s00406-017-0828-4
doi: 10.1007/s00406-017-0828-4 pubmed: 28761988
Chan RCK, Xu T, Heinrichs RW, Yu Y, Gong Q (2010) Neurological soft signs in non-psychotic first-degree relatives of patients with schizophrenia: a systematic review and meta-analysis. Neurosci Biobehav Rev 34(6):889–896
doi: 10.1016/j.neubiorev.2009.11.012
Sanders RD, Joo YH, Almasy L, Wood J, Keshavan MS, Pogue-Geile MF, Gur RC, Gur RE, Nimgaonkar VL (2006) Are neurologic examination abnormalities heritable? A preliminary study. Schizophr Res 86(1–3):172–180. https://doi.org/10.1016/j.schres.2006.06.012
doi: 10.1016/j.schres.2006.06.012 pubmed: 16854564
Chan RCK, Xie W, Geng FL, Wang Y, Lui SSY, Wang CY, Yu X, Cheung EFC, Rosenthal R (2016) Clinical utility and lifespan profiling of neurological soft signs in schizophrenia spectrum disorders. Schizophr Bull 42(3):560–570. https://doi.org/10.1093/schbul/sbv196
doi: 10.1093/schbul/sbv196 pubmed: 26712863
Tamagni C, Studerus E, Gschwandtner U, Aston J, Borgwardt S, Riecher-Rössler A (2013) Are neurological soft signs pre-existing markers in individuals with an at-risk mental state for psychosis? Psychiatry Res 210(2):427–431. https://doi.org/10.1016/j.psychres.2013.06.016
doi: 10.1016/j.psychres.2013.06.016 pubmed: 23880482
Callaway DA, Perkins DO, Woods SW, Liu L, Addington J (2014) Movement abnormalities predict transitioning to psychosis in individuals at clinical high risk for psychosis. Schizophr Res 159(2–3):263–266. https://doi.org/10.1016/j.schres.2014.09.031
doi: 10.1016/j.schres.2014.09.031 pubmed: 25311779 pmcid: 4253541
Mittal VA, Walker EF, Bearden CE, Walder D, Trottman H, Daley M, Simone A, Cannon TD (2010) Markers of basal ganglia dysfunction and conversion to psychosis: neurocognitive deficits and dyskinesias in the prodromal period. Biol Psychiatry 68(1):93–99. https://doi.org/10.1016/j.biopsych.2010.01.021
doi: 10.1016/j.biopsych.2010.01.021 pubmed: 20227679 pmcid: 2891189
Schiffman J (2017) Motor issues in the clinical high risk phase of psychosis. Schizophr Bull 43(5):937–938. https://doi.org/10.1093/schbul/sbx086
doi: 10.1093/schbul/sbx086 pubmed: 28655205 pmcid: 5581897
Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44(7):660–669. https://doi.org/10.1001/archpsyc.1987.01800190080012
doi: 10.1001/archpsyc.1987.01800190080012 pubmed: 3606332
Weinberger DR (2017) Future of days past: neurodevelopment and schizophrenia. Schizophr Bull 43(6):1164–1168. https://doi.org/10.1093/schbul/sbx118
doi: 10.1093/schbul/sbx118 pubmed: 29040792 pmcid: 5737209
Rapoport JL, Giedd JN, Gogtay N (2012) Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 17(12):1228–1238. https://doi.org/10.1038/mp.2012.23
doi: 10.1038/mp.2012.23 pubmed: 22488257 pmcid: 3504171
Bang M, Park H-J, Pae C, Park K, Lee E, Lee S-K, An SK (2018) Aberrant cerebro-cerebellar functional connectivity and minimal self-disturbance in individuals at ultra-high risk for psychosis and with first-episode schizophrenia. Schizophr Res 202:138–140. https://doi.org/10.1016/j.schres.2018.06.031
doi: 10.1016/j.schres.2018.06.031 pubmed: 29925474
Andreasen NC, Paradiso S, O’Leary DS (1998) Cognitive dysmetria as an integrative theory of schizophrenia: a dysfunction in cortical-cerebellar circuitry? Schizophr Bull 24:203–218. https://doi.org/10.1093/oxfordjournals.schbul.a033321
doi: 10.1093/oxfordjournals.schbul.a033321 pubmed: 9613621 pmcid: 9613621
Thomann PA, Wustenberg T, Dos Santos V, Bachmann S, Essig M, Schroder J (2009) Neurological soft signs and brain morphology in first-episode schizophrenia. Psychol Med 39:371–379
doi: 10.1017/S0033291708003656
Dazzan P, Morgan KD, Orr KG, Huchinson G, Chitnis X, Suckling J, Fearon P, Salvo J, McGuire PK, Mallett RM, Jones PB, Leff J, Murray RM (2004) The structural brain correlates of neurological soft signs in AESOP first-episode psychoses study. Brain 127:143–153
doi: 10.1093/brain/awh015
Kong L, Bachmann S, Thomann PA, Essig M, Schröder J (2012) Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 134(1):27–32. https://doi.org/10.1016/j.schres.2011.09.015
doi: 10.1016/j.schres.2011.09.015 pubmed: 22018942
Kong L, Herold CJ, Cheung EFC, Chan RCK, Schröder J (2020) Neurological soft signs and brain network abnormalities in schizophrenia. Schizophr Bull 46(3):562–571. https://doi.org/10.1093/schbul/sbz118
doi: 10.1093/schbul/sbz118 pubmed: 31773162
Mittal VA, Dean DJ, Bernard JA, Orr JM, Pelletier-Baldelli A, Carol EE, Gupta T, Turner J, Leopold DR, Robustelli BL (2014) Neurological soft signs predict abnormal cerebellar-thalamic tract development and negative symptoms in adolescents at high risk for psychosis: a longitudinal perspective. Schizophr Bull 40(6):1204–1215. https://doi.org/10.1093/schbul/sbt199
doi: 10.1093/schbul/sbt199 pubmed: 24375457
Kong L, Cui H, Zhang T, Wang Y, Huang J, Zhu Y, Tang Y, Herold CJ, Schröder J, Cheung EFC, Chan RCK, Wang J (2019) Neurological soft signs and grey matter abnormalities in individuals with ultra-high risk for psychosis. PsyCh J 8:250–262. https://doi.org/10.1002/pchj.258
doi: 10.1002/pchj.258
Yung AR, McGorry PD, McFarlane CA, Jackson HJ, Patton GC, Rakkar A (1996) Monitoring and care of young people at incipient risk of psychosis. Schizophr Bull 22(2):283–303. https://doi.org/10.1093/schbul/22.2.283
doi: 10.1093/schbul/22.2.283 pubmed: 8782287
McGorry PD, Goodwin RJ, Stuart GW (1988) The development, use, and reliability of the brief psychiatric rating scale (nursing modification)—an assessment procedure for the nursing team in clinical and research settings. Compr Psychiatry 29(6):575–587. https://doi.org/10.1016/0010-440X(88)90078-8
doi: 10.1016/0010-440X(88)90078-8 pubmed: 3233950
Yung AR, Pan Yuen H, Mcgorry PD, Phillips LJ, Kelly D, Dell’olio M, Francey SM, Cosgrave EM, Killackey E (2005) Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust N Z J Psychiatry 39(11–12):964–971. https://doi.org/10.1080/j.1440-1614.2005.01714.x
doi: 10.1080/j.1440-1614.2005.01714.x pubmed: 16343296
American Psychiatric Association (1986) Global assessment of functioning (GAF). Diagnostic and statistical manual of mental disorders-III-R. American Psychiatric Association, Washington DC
Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, Hallgren M, McGorry PD (2003) Psychosis prediction: 12-month follow-up of a high-risk (“prodromal”) group. Schizophr Res 60(1):21–32
doi: 10.1016/S0920-9964(02)00167-6
Nelson B, Yuen HP, Wood SJ, Lin A, Spiliotacopoulos D, Bruxner A, Broussard C, Simmons M, Foley DL, Brewer WJ (2013) Long-term follow-up of a group at ultra high risk (“prodromal”) for psychosis: the PACE 400 study. JAMA Psychiat 70(8):793–802. https://doi.org/10.1001/jamapsychiatry.2013.1270
doi: 10.1001/jamapsychiatry.2013.1270
First MB, Spitzer RL, Gibbon M, Williams JBW (1997) User’s guide for the Structured clinical interview for DSM-IV axis I disorders SCID-I: clinician version. American Psychiatric Publication, Washington
Gaser C, Dahnke R (2016) CAT-a computational anatomy toolbox for the analysis of structural MRI data. HBM 2016:336–348
Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6):805–821. https://doi.org/10.1006/nimg.2000.0582
doi: 10.1006/nimg.2000.0582 pubmed: 10860804
Winkler AM, Ridgway GR, Webster MA, Smith SM, Nichols TE (2014) Permutation inference for the general linear model. Neuroimage 92:381–397. https://doi.org/10.1016/j.neuroimage.2014.01.060
doi: 10.1016/j.neuroimage.2014.01.060 pubmed: 24530839
Schroder J, Niethammer R, Geider FJ, Reitz C, Binkert M, Jauss M, Sauer H (1992) Neurological soft signs in schizophrenia. Schizophr Res 6:25–30
doi: 10.1016/0920-9964(91)90017-L
Ruhrmann S, Schultze-Lutter F, Klosterkötter J (2010) Probably at-risk, but certainly ill–advocating the introduction of a psychosis spectrum disorder in DSM-V. Schizophr Res 120(1–3):23–37. https://doi.org/10.1016/j.schres.2010.03.015
doi: 10.1016/j.schres.2010.03.015 pubmed: 20400269
Lin A, Wood SJ, Nelson B, Beavan A, McGorry P, Yung AR (2015) Outcomes of nontransitioned cases in a sample at ultra-high risk for psychosis. Am J Psychiatry 172(3):249–258. https://doi.org/10.1176/appi.ajp.2014.13030418
doi: 10.1176/appi.ajp.2014.13030418 pubmed: 25727537
Cropley VL, Lin A, Nelson B, Reniers RLEP, Yung AR, Bartholomeusz CF, Klauser P, Velakoulis D, McGorry P, Wood SJ, Pantelis C (2016) Baseline grey matter volume of non-transitioned “ultra high risk” for psychosis individuals with and without attenuated psychotic symptoms at long-term follow-up. Schizophr Res 173(3):152–158. https://doi.org/10.1016/j.schres.2015.05.014
doi: 10.1016/j.schres.2015.05.014 pubmed: 26032566
Addington J, Piskulic D, Liu L, Lockwood J, Cadenhead KS, Cannon TD, Cornblatt BA, McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Bearden CE, Mathalon DH, Woods SW (2017) Comorbid diagnoses for youth at clinical high risk of psychosis. Schizophr Res 190:90–95. https://doi.org/10.1016/j.schres.2017.03.043
doi: 10.1016/j.schres.2017.03.043 pubmed: 28372906 pmcid: 5731830
Pantelis C, Yücel M, Wood SJ, Velakoulis D, Sun D, Berger G, Stuart GW, Yung A, Phillips L, McGorry PD (2005) Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. Schizophr Bull 31(3):672–696. https://doi.org/10.1093/schbul/sbi034
doi: 10.1093/schbul/sbi034 pubmed: 16020551
Mechelli A, Riecher-Rössler A, Meisenzahl EM, Tognin S, Wood SJ, Borgwardt SJ, Koutsouleris N, Yung AR, Stone JM, Phillips LJ (2011) Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Arch Gen Psychiatry 68(5):489–495. https://doi.org/10.1001/archgenpsychiatry.2011.42
doi: 10.1001/archgenpsychiatry.2011.42 pubmed: 21536978
Fusar-Poli P, Radua J, McGuire P, Borgwardt S (2012) Neuroanatomical maps of psychosis onset: voxel-wise meta-analysis of antipsychotic-naive VBM studies. Schizophr Bull 38(6):1297–1307. https://doi.org/10.1093/schbul/sbr134
doi: 10.1093/schbul/sbr134 pubmed: 22080494
Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ, Yung AR, Bullmore ET, Brewer W, Soulsby B (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288
doi: 10.1016/S0140-6736(03)12323-9
Bartholomeusz CF, Cropley VL, Wannan C, Di Biase M, McGorry PD, Pantelis C (2017) Structural neuroimaging across early-stage psychosis: Aberrations in neurobiological trajectories and implications for the staging model. Aust N Z J Psychiatry 51(5):455–476. https://doi.org/10.1177/0004867416670522
doi: 10.1177/0004867416670522 pubmed: 27733710
Takahashi T, Wood SJ, Yung AR, Walterfang M, Phillips LJ, Soulsby B, Kawasaki Y, McGorry PD, Suzuki M, Velakoulis D (2010) Superior temporal gyrus volume in antipsychotic-naive people at risk of psychosis. Br J Psychiatry 196(3):206–211. https://doi.org/10.1192/bjp.bp.109.069732
doi: 10.1192/bjp.bp.109.069732 pubmed: 20194543
Wood SJ, Kennedy D, Phillips LJ, Seal ML, Yücel M, Nelson B, Yung AR, Jackson G, McGorry PD, Velakoulis D (2010) Hippocampal pathology in individuals at ultra-high risk for psychosis: a multi-modal magnetic resonance study. Neuroimage 52(1):62–68. https://doi.org/10.1016/j.neuroimage.2010.04.012
doi: 10.1016/j.neuroimage.2010.04.012 pubmed: 20399273
Zhao Q, Li Z, Huang J, Yan C, Dazzan P, Pantelis C, Cheung EFC, Lui SSY, Chan RCK (2014) Neurological soft signs are not “soft” in brain structure and functional networks: evidence from ALE meta-analysis. Schizophr Bull 40(3):626–641. https://doi.org/10.1093/schbul/sbt063
doi: 10.1093/schbul/sbt063 pubmed: 23671197
Hirjak D, Kubera KM, Wolf RC, Thomann AK, Hell SK, Seidl U, Thomann PA (2015) Local brain gyrification as a marker of neurological soft signs in schizophrenia. Behav Brain Res 292:19–25. https://doi.org/10.1016/j.bbr.2015.05.048
doi: 10.1016/j.bbr.2015.05.048 pubmed: 26031380
Bachmann S, Schröder J (2018) Neurological soft signs in schizophrenia: an update on the state-versus trait-perspective. Front Psych 8:272. https://doi.org/10.3389/fpsyt.2017.00272
doi: 10.3389/fpsyt.2017.00272
Bottmer C, Bachmann S, Pantel J, Essig M, Amann M, Schad LR, Magnotta V, Schröder J (2005) Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res Neuroimaging 140(3):239–250
doi: 10.1016/j.pscychresns.2005.02.011
Keshavan MS, Sanders RD, Sweeney JA, Diwadkar VA, Goldstein G, Pettegrew JW, Schooler NR (2003) Diagnostic specificity and neuroanatomical validity of neurological abnormalities in first-episode psychoses. Am J Psychiatry 160(7):1298–1304. https://doi.org/10.1176/appi.ajp.160.7.1298
doi: 10.1176/appi.ajp.160.7.1298 pubmed: 12832245
Mouchet-Mages S, Canceil O, Willard D, Krebs M-O, Cachia A, Martinot J-L, Rodrigo S, Oppenheim C, Meder J-F (2007) Sensory dysfunction is correlated to cerebellar volume reduction in early schizophrenia. Schizophr Res 91(1–3):266–269. https://doi.org/10.1016/j.schres.2006.11.031
doi: 10.1016/j.schres.2006.11.031 pubmed: 17261362
Herold CJ, Essig M, Schröder J (2020) Neurological soft signs (NSS) and brain morphology in patients with chronic schizophrenia and healthy controls. PLoS ONE 15(4):e0231669. https://doi.org/10.1371/journal.pone.0231669
doi: 10.1371/journal.pone.0231669 pubmed: 32320431 pmcid: 7176089
Fusar-Poli P, Salazar de Pablo G, Correll CU, Meyer-Lindenberg A, Millan MJ, Borgwardt S, Galderisi S, Bechdolf A, Pfennig A, Kessing LV, van Amelsvoort T, Nieman DH, Domschke K, Krebs M-O, Koutsouleris N, McGuire P, Do KQ, Arango C (2020) Prevention of psychosis: advances in detection, prognosis, and intervention. JAMA Psychiat 77(7):755–765. https://doi.org/10.1001/jamapsychiatry.2019.4779
doi: 10.1001/jamapsychiatry.2019.4779
Nelson B, Yuen HP, Lin A, Wood SJ, McGorry PD, Hartmann JA, Yung AR (2016) Further examination of the reducing transition rate in ultra high risk for psychosis samples: the possible role of earlier intervention. Schizophr Res 174(1–3):43–49. https://doi.org/10.1016/j.schres.2016.04.040
doi: 10.1016/j.schres.2016.04.040 pubmed: 27173977
Formica MJC, Phillips LJ, Hartmann JA, Yung AR, Wood SJ, Lin A, Amminger GP, McGorry PD, Nelson B (2020) Has improved treatment contributed to the declining rate of transition to psychosis in ultra-high-risk cohorts? Schizophr Res. https://doi.org/10.1016/j.schres.2020.04.028
doi: 10.1016/j.schres.2020.04.028 pubmed: 32402606
Yung AR, Yuen HP, Berger G, Francey S, Hung TC, Nelson B, Phillips L, McGorry P (2007) Declining transition rate in ultra high risk (prodromal) services: dilution or reduction of risk? Schizophr Bull 33(3):673–681. https://doi.org/10.1093/schbul/sbm015
doi: 10.1093/schbul/sbm015 pubmed: 17404389 pmcid: 2526154
Hartmann JA, Yuen HP, McGorry PD, Yung AR, Lin A, Wood SJ, Lavoie S, Nelson B (2016) Declining transition rates to psychotic disorder in “ultra-high risk” clients: investigation of a dilution effect. Schizophr Res 170(1):130–136. https://doi.org/10.1016/j.schres.2015.11.026
doi: 10.1016/j.schres.2015.11.026 pubmed: 26673973

Auteurs

Ya Wang (Y)

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.
Neuropsychology and Applied Cognitive Neuroscience Lab, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.

Esmee E Braam (EE)

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.

Cassandra M J Wannan (CMJ)

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.

Tamsyn E Van Rheenen (TE)

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.
Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia.

Raymond C K Chan (RCK)

Neuropsychology and Applied Cognitive Neuroscience Lab, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China.

Barnaby Nelson (B)

Orygen, Melbourne, Australia.
Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.

Patrick D McGorry (PD)

Orygen, Melbourne, Australia.
Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.

Alison R Yung (AR)

Orygen, Melbourne, Australia.
Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.
School of Health Sciences, University of Manchester, Manchester, UK.
Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia.

Ashleigh Lin (A)

Telethon Kids Institute, The University of Western Australia, Perth, Australia.

Warrick J Brewer (WJ)

Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.

John Koutsogiannis (J)

Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.

Stephen J Wood (SJ)

Orygen, Melbourne, Australia.
Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia.
School of Psychology, University of Birmingham, Edgbaston, UK.

Dennis Velakoulis (D)

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.
Neuropsychiatry Unit, Royal Melbourne Hospital, Melbourne Health, Melbourne, Australia.

Christos Pantelis (C)

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia.
Florey Institute of Neuroscience and Mental Health, Melbourne, Australia.

Vanessa L Cropley (VL)

Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Level 3, Alan Gilbert Building, 161 Barry St, Carlton, Melbourne, VIC, 3053, Australia. vcropley@unimelb.edu.au.
Centre for Mental Health, Faculty of Health, Arts and Design, School of Health Sciences, Swinburne University, Melbourne, Australia. vcropley@unimelb.edu.au.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH