Structure of Animal Silks.
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
2
9
2021
pubmed:
3
9
2021
medline:
15
1
2022
Statut:
ppublish
Résumé
As an abundant fibrous protein, animal silks have received a variety of interests in both traditional and high-tech industries, such as textiles, decoration, and biomedicine, due to their unique advantages in mechanical performance, sustainability, biocompatibility, and biodegradability. While developing applications of animal silks, the structure of animal silks has also received more and more attention in these decades. Briefly, most animal silks can be considered as semicrystalline fibers, which are composed of β-sheet nanocrystals and amorphous regions. However, different animal silks have similarities and also have obvious differences at different structural levels. In this chapter, we will introduce the structures of the three most representative animal silks, that is, spider dragline silk, tussah silk, and mulberry silk. The similarities and differences in their structures will be highlighted, so as to provide fundamental guidance for the research and use of these animal silks.
Identifiants
pubmed: 34472050
doi: 10.1007/978-1-0716-1574-4_1
doi:
Substances chimiques
Silk
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
3-15Informations de copyright
© 2021. Springer Science+Business Media, LLC, part of Springer Nature.
Références
Yarger JL, Cherry BR, Arjan VDV (2018) Uncovering the structure–function relationship in spider silk. Nat Rev Mater 3:18008
doi: 10.1038/natrevmats.2018.8
Ling S, Kaplan DL, Buehler MJ (2018) Nanofibrils in nature and materials engineering. Nat Rev Mater 3:18016
pubmed: 34168896
pmcid: 8221570
doi: 10.1038/natrevmats.2018.16
Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: structure and mechanical properties. Prog Mater Sci 53:1–206
doi: 10.1016/j.pmatsci.2007.05.002
Lin S, Ye C, Zhang W, Xu A, Chen S, Ren J, Ling S (2019) Nanofibril organization in silk fiber as inspiration for ductile and damage-tolerant fiber design. Adv Fiber Mater 1:231–240
doi: 10.1007/s42765-019-00013-y
Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL (2018) Tensan silk-inspired hierarchical fibers for smart textile applications. ACS Nano 12:6968–6977
pubmed: 29932636
pmcid: 6501189
doi: 10.1021/acsnano.8b02430
Ling S, Jin K, Kaplan DL, Buehler MJ (2016) Ultrathin free-standing Bombyx mori silk nanofibril membranes. Nano Lett 16:3795–3800
pubmed: 27076389
doi: 10.1021/acs.nanolett.6b01195
pmcid: 27076389
Shengjie L, Zhao Q, Wenwen H, Sufeng C, David L, Kaplan (2017) Design and function of biomimetic multilayer water purification membranes. Sci Adv 3:e1601939
doi: 10.1126/sciadv.1601939
Ling S, Wang Q, Zhang D, Zhang Y, Mu X, Kaplan DL, Buehler MJ (2018) Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. Adv Funct Mater 28:1705291
pubmed: 30505261
doi: 10.1002/adfm.201705291
pmcid: 30505261
Ling S, Li C, Jin K, Kaplan DL, Buehler MJ (2016) Liquid exfoliated natural silk nanofibrils: applications in optical and electrical devices. Adv Mater 28:7783–7790
pubmed: 27352291
doi: 10.1002/adma.201601783
pmcid: 27352291
Guo J, Li C, Ling S, Huang W, Chen Y, Kaplan DL (2017) Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials 145:44–55
pubmed: 28843732
pmcid: 5610098
doi: 10.1016/j.biomaterials.2017.08.025
Zheng K, Ling S (2019) De novo design of recombinant spider silk proteins for material applications. Biotechnol J 14:e1700753
pubmed: 29781251
doi: 10.1002/biot.201700753
Arcidiacono S, Mello C, Kaplan D, Cheley S, Bayley H (1998) Purification and characterization of recombinant spider silk expressed in Escherichia coli. Appl Microbiol Biotechnol 49:31–38
pubmed: 9487707
doi: 10.1007/s002530051133
Jansson R, Lau CH, Ishida T, Ramström M, Sandgren M, Hedhammar M (2016) Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris. Biotechnol J 11:687–699
pubmed: 26814048
doi: 10.1002/biot.201500412
Teulé F, Cooper AR, Furin WA, Bittencourt D, Rech EL, Brooks A, Lewis RV (2009) A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat Protoc 4:341–355
pubmed: 19229199
pmcid: 2720753
doi: 10.1038/nprot.2008.250
Scheller J, Henggeler D, Viviani A, Conrad U (2004) Purification of spider silk-elastin from transgenic plants and application for human chondrocyte proliferation. Transgenic Res 13:51–57
pubmed: 15070075
doi: 10.1023/B:TRAG.0000017175.78809.7a
Wang Y, Kim H-J, Vunjak-Novakovic G, Kaplan DL (2006) Stem cell-based tissue engineering with silk biomaterials. Biomaterials 27:6064–6082
pubmed: 16890988
doi: 10.1016/j.biomaterials.2006.07.008
Rammensee S, Huemmerich D, Hermanson KD, Scheibel T, Bausch AR (2005) Rheological characterization of hydrogels formed by recombinantly produced spider silk. Appl Phys A 82:261
doi: 10.1007/s00339-005-3431-x
Huemmerich D, Slotta U, Scheibel T (2006) Processing and modification of films made from recombinant spider silk proteins. Appl Phys A 82:219–222
doi: 10.1007/s00339-005-3428-5
Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077–2082
pubmed: 12628828
doi: 10.1016/S0142-9612(02)00635-X
Gustafsson L, Jansson R, Hedhammar M, van der Wijngaart W (2018) Structuring of functional spider silk wires, coatings, and sheets by self-assembly on superhydrophobic pillar surfaces. Adv Mater 3:1704325
doi: 10.1002/adma.201704325
Giesa T, Arslan M, Pugno NM, Buehler MJ (2011) Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. Nano Lett 11:5038–5046
pubmed: 21967633
doi: 10.1021/nl203108t
Du N, Liu XY, Narayanan J, Li L, Lim ML, Li D (2006) Design of superior spider silk: from nanostructure to mechanical properties. Biophys J 91:4528–4535
pubmed: 16950851
pmcid: 1779941
doi: 10.1529/biophysj.106.089144
Giesa T, Buehler MJ (2013) Nanoconfinement and the strength of biopolymers. Annu Rev Biophys 42:651–673
pubmed: 23654307
doi: 10.1146/annurev-biophys-083012-130345
Keten S, Xu Z, Ihle B, Buehler MJ (2010) Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk. Nat Mater 9:359–367
pubmed: 20228820
doi: 10.1038/nmat2704
Fu C, Wang Y, Guan J, Chen X, Vollrath F, Shao Z (2019) Cryogenic toughness of natural silk and a proposed structure–function relationship. Mater Chem Front 3:2507–2513
doi: 10.1039/C9QM00282K
And YN, Asakura T (2002) High-resolution 13C CP/MAS NMR study on structure and structural transition of antheraea pernyi silk fibroin containing Poly(l-alanine) and Gly-rich regions. Macromolecules 35:2393–2400
doi: 10.1021/ma011999t
Work RW, Young CT (1987) The amino acid compositions of major and minor ampullate silks of certain orb-web-building spiders (Araneae, Araneidae). J Arachnol 15:65–80
Shao Z, Vollrath F, Yang Y, Thogersen HC (2003) Structure and behavior of regenerated spider silk. Macromolecules 36:1157–1161
doi: 10.1021/ma0214660
Ha SW, Gracz HS, Tonelli AE, Hudson SM (2005) Structural study of iIrregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules 6:2563
pubmed: 16153093
doi: 10.1021/bm050294m
Takei F, Kikuchi Y, Kikuchi A, Mizuno S, Shimura K (1987) Further evidence for importance of the subunit combination of silk fibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol 105:175–180
pubmed: 3611183
doi: 10.1083/jcb.105.1.175
pmcid: 3611183
Tanaka K, Kajiyama N, Ishikura K, Shou W, Mizuno S (1999) Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103
pubmed: 10366732
doi: 10.1016/S0167-4838(99)00088-6
pmcid: 10366732
Tanaka K, Mori K, Mizuno S (1993) Immunological identification of the major disulfide-linked light component of silk fibroin. J Biochem 114:1–4
pubmed: 8407860
doi: 10.1093/oxfordjournals.jbchem.a124122
pmcid: 8407860
Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528
pubmed: 10986287
doi: 10.1074/jbc.M006897200
Cong-Zhao Z, Fabrice C, Nadine M, Yvan Z, Catherine E, Yang T, Michel J, Joel J, Michel D, Roland P (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res 12:2413–2419
Lewis RV (1992) Spider silk: the unraveling of a mystery. Acc Chem Res 25:392–398
doi: 10.1021/ar00021a002
Sezutsu H, Yukuhiro K (2000) Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol 51:329–338
pubmed: 11040284
doi: 10.1007/s002390010095
pmcid: 11040284
Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci U S A 87:7120–7124
pubmed: 2402494
pmcid: 54695
doi: 10.1073/pnas.87.18.7120
Thamm C, Scheibel T (2017) Recombinant production, characterization, and fiber spinning of an engineered short Major Ampullate Spidroin (MaSp1s). Biomacromolecules 18:1365–1372
pubmed: 28233980
doi: 10.1021/acs.biomac.7b00090
pmcid: 28233980
Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106:3762–3774
pubmed: 16967919
doi: 10.1021/cr010194g
pmcid: 16967919
Rising A, Nimmervoll H, Grip S, Fernandez-Arias A, Storckenfeldt E, Knight DP, Vollrath F, Engström W (2005) Spider silk proteins—mechanical property and gene sequence. Zool Sci 22:273–281
doi: 10.2108/zsj.22.273
Holland GP, Lewis RV, Yarger JL (2004) WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted nephila clavipes spider dragline silk. J Am Chem Soc 126:5867–5872
pubmed: 15125679
doi: 10.1021/ja031930w
Holland GP, Jenkins JE, Creager MS, Lewis RV, Yarger JL (2008) Solid-state NMR investigation of major and minor ampullate spider silk in the native and hydrated states. Biomacromolecules 9:651–657
pubmed: 18171016
doi: 10.1021/bm700950u
van Beek JD, Hess S, Vollrath F, Meier BH (2002) The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci 99:10266–10271
pubmed: 12149440
pmcid: 124902
doi: 10.1073/pnas.152162299
Lefevre T, Rousseau ME, Pezolet M (2007) Protein secondary structure and orientation in silk as revealed by Raman spectromicroscopy. Biophys J 92:2885–2895
pubmed: 17277183
pmcid: 1831708
doi: 10.1529/biophysj.106.100339
Brooks AE, Stricker SM, Joshi SB, Kamerzell TJ, Middaugh CR, Lewis RV (2008) Properties of synthetic spider silk fibers based on argiope aurantia MaSp2. Biomacromolecules 9:1506–1510
pubmed: 18457450
doi: 10.1021/bm701124p
Hardy JG, Römer LM, Scheibel TR (2008) Polymeric materials based on silk proteins. Polymer 49:4309–4327
doi: 10.1016/j.polymer.2008.08.006
Asakura T, Okonogi M, Nakazawa Y, Yamauchi K (2006) Structural analysis of alanine tripeptide with antiparallel and parallel beta-sheet structures in relation to the analysis of mixed beta-sheet structures in samia cynthia ricini silk protein fiber using solid-state NMR spectroscopy. J Am Chem Soc 128:6231–6238
pubmed: 16669693
doi: 10.1021/ja060251t
Ha S-W, Gracz HS, Tonelli AE, Hudson SM (2005) Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin. Biomacromolecules 6:2563–2569
pubmed: 16153093
doi: 10.1021/bm050294m
Drummy LF, Farmer BL, Naik RR (2007) Correlation of the β-sheet crystal size in silk fibers with the protein amino acid sequence. Soft Matter 3:877–882
pubmed: 32900081
doi: 10.1039/B701220A
Hallmark V, Rabolt JF (1989) Fourier-transform Raman studies of secondary structure in synthetic polypeptides. Macromolecules 22:500–502
doi: 10.1021/ma00191a099
Termonia Y (1994) Molecular modeling of spider silk elasticity. Macromolecules 27:7378–7381
doi: 10.1021/ma00103a018
Blackledge TA (2012) Spider silk: a brief review and prospectus on research linking biomechanics and ecology in draglines and orb webs. J Arachnol 40:1–12
doi: 10.1636/M11-67.1
Hakimi O, Knight DP, Vollrath F, Vadgama P (2007) Spider and mulberry silkworm silks as compatible biomaterials. Compos B Eng 38:324–337
doi: 10.1016/j.compositesb.2006.06.012
Thiel BL, Kunkel DD, Viney C (1994) Physical and chemical microstructure of spider dragline: a study by analytical transmission electron microscopy. Pept Sci 34:1089–1097
doi: 10.1002/bip.360340812
Thiel BL, Guess KB, Viney C (2015) Non-periodic lattice crystals in the hierarchical microstructure of spider (major ampullate) silk. Biopolymers 41:703–719
doi: 10.1002/(SICI)1097-0282(199706)41:7<703::AID-BIP1>3.0.CO;2-T
Riekel C, Vollrath F (2001) Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. Int J Biol Macromol 29:203–210
pubmed: 11589973
doi: 10.1016/S0141-8130(01)00166-0
Grubb DT, Jelinski LW (2010) Fiber morphology of spider silk: the effects of tensile deformation. Macromolecules 30:2860–2867
doi: 10.1021/ma961293c
Fu C, Shao Z, Fritz V (2009) Animal silks: their structures, properties and artificial production. Chem Commun (Camb):6515–6529
Müller M (2007) Silkworm silk under tensile strain investigated by neutron spectroscopy and synchrotron X-ray diffraction. Macromolecules 40:1035–1042
doi: 10.1021/ma062599e
Krasnov I, Diddens I, Hauptmann N, Helms G, Ogurreck M, Seydel T, Funari SS, Muller M (2008) Mechanical properties of silk: interplay of deformation on macroscopic and molecular length scales. Phys Rev Lett 100:048104
pubmed: 18352338
doi: 10.1103/PhysRevLett.100.048104
Ling S, Qi Z, Knight DP, Huang Y, Huang L, Zhou H, Shao Z, Chen X (2013) Insight into the structure of single Antheraea pernyi silkworm fibers using synchrotron FTIR microspectroscopy. Biomacromolecules 14:1885–1892
pubmed: 23607809
doi: 10.1021/bm400267m
Ling S, Qi Z, Knight DP, Shao Z, Chen X (2011) Synchrotron FTIR microspectroscopy of single natural silk fibers. Biomacromolecules 12:3344–3349
pubmed: 21790142
doi: 10.1021/bm2006032
Nguyen AT, Huang QL, Yang Z, Lin N, Xu G, Liu XY (2015) Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance. Small 11:1039–1054
pubmed: 25510895
doi: 10.1002/smll.201402985
Shen Y, Johnson MA, Martin DC (1998) Microstructural characterization of Bombyx mori silk fibers. Macromolecules 31:8857–8864
doi: 10.1021/ma980281j
Miller LD, Putthanarat S, Eby RK, Adams WW (1999) Investigation of the nanofibrillar morphology in silk fibers by small angle X-ray scattering and atomic force microscopy. Int J Biol Macromol 24:159–165
pubmed: 10342760
doi: 10.1016/S0141-8130(99)00024-0
Xu G, Gong L, Yang Z, Liu XY (2014) What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter 10:2116–2123
pubmed: 24652059
doi: 10.1039/C3SM52845F
Putthanarat S, Stribeck N, Fossey SA, Eby RK, Adams WW (2000) Investigation of the nanofibrils of silk fibers. Polymer 41:7735–7747
doi: 10.1016/S0032-3861(00)00036-7
Poza P, Pérez-Rigueiro J, Elices M, Llorca J (2002) Fractographic analysis of silkworm and spider silk. Eng Fract Mech 69:1035–1048
doi: 10.1016/S0013-7944(01)00120-5
Wang Q, Schniepp HC (2018) Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett 7:1364–1370
doi: 10.1021/acsmacrolett.8b00678
Niu Q, Peng Q, Lu L, Fan S, Shao H, Zhang H, Wu R, Hsiao BS, Zhang Y (2018) Single molecular layer of silk nanoribbon as potential basic building block of silk materials. ACS Nano 12:11860–11870
pubmed: 30407791
doi: 10.1021/acsnano.8b03943
Zheng K, Zhong J, Qi Z, Ling S, Kaplan DL (2018) Isolation of silk mesostructures for electronic and environmental applications. Adv Funct Mater 28:1806380
doi: 10.1002/adfm.201806380
KITAGAWA M, KITAYAMA T (1997) Mechanical properties of dragline and capture thread for the spider Nephila clavata. J Mater Sci 32:2005–2012
doi: 10.1023/A:1018550116930
Brown CP, Harnagea C, Gill HS, Price AJ, Traversa E, Licoccia S, Rosei F (2012) Rough fibrils provide a toughening mechanism in biological fibers. ACS Nano 6:1961–1969
pubmed: 22324287
doi: 10.1021/nn300130q
pmcid: 22324287
Cranford SW (2013) Increasing silk fibre strength through heterogeneity of bundled fibrils. J R Soc Interface 10:20130148
pubmed: 23486175
pmcid: 3627094
doi: 10.1098/rsif.2013.0148
Riekel C, Burghammer M, Dane TG, Ferrero C, Rosenthal M (2017) Nanoscale structural features in major ampullate spider silk. Biomacromolecules 18:231–241
pubmed: 28001374
doi: 10.1021/acs.biomac.6b01537
Gould SAC, Tran KT, Spagna JC, Moore AMF, Shulman JB (1999) Short and long range order of the morphology of silk from Latrodectus hesperus (Black Widow) as characterized by atomic force microscopy. Int J Biol Macromol 24:151–157
pubmed: 10342759
doi: 10.1016/S0141-8130(99)00003-3
pmcid: 10342759
Koebley SR, Vollrath F, Schniepp HC (2017) Toughness-enhancing metastructure in the recluse spider’s looped ribbon silk. Mater Horiz 4:377–382
doi: 10.1039/C6MH00473C
Li SF, McGhie AJ, Tang SL (1994) New internal structure of spider dragline silk revealed by atomic force microscopy. Biophys J 66:1209–1212
pubmed: 8038392
pmcid: 1275828
doi: 10.1016/S0006-3495(94)80903-8
Vollrath F, Holtet T, Thøgersen HC, Frische S (1996) Structural organization of spider silk. Proc R Soc London Ser B 263:147–151
doi: 10.1098/rspb.1996.0023
Shao Z, Vollrath F (2002) Surprising strength of silkworm silk. Nature 418:741
pubmed: 12181556
doi: 10.1038/418741a
Kundu SC, Kundu B, Talukdar S, Bano S, Nayak S, Kundu J, Mandal BB, Bhardwaj N, Botlagunta M, Dash BC, Acharya C, Ghosh AK (2012) Invited review nonmulberry silk biopolymers. Biopolymers 97:455–467
pubmed: 22241173
doi: 10.1002/bip.22024
Sponner A, Vater W, Monajembashi S, Unger E, Grosse F, Weisshart K (2007) Composition and hierarchical organisation of a spider silk. PLoS One 2:e998
pubmed: 17912375
pmcid: 1994588
doi: 10.1371/journal.pone.0000998