Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression.
Journal
Nature genetics
ISSN: 1546-1718
Titre abrégé: Nat Genet
Pays: United States
ID NLM: 9216904
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
20
05
2020
accepted:
12
07
2021
pubmed:
4
9
2021
medline:
15
10
2021
entrez:
3
9
2021
Statut:
ppublish
Résumé
Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.
Identifiants
pubmed: 34475573
doi: 10.1038/s41588-021-00913-z
pii: 10.1038/s41588-021-00913-z
pmc: PMC8432599
mid: NIHMS1723987
doi:
Substances chimiques
Blood Proteins
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1300-1310Subventions
Organisme : NIMH NIH HHS
ID : R01 MH109905
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES023834
Pays : United States
Organisme : NIEHS NIH HHS
ID : R01 ES020506
Pays : United States
Organisme : Wellcome Trust
ID : 201488/Z/16/Z
Pays : United Kingdom
Organisme : NCI NIH HHS
ID : R01 CA107431
Pays : United States
Organisme : NIEHS NIH HHS
ID : R21 ES024834
Pays : United States
Organisme : Medical Research Council
ID : G9815508
Pays : United Kingdom
Organisme : NIEHS NIH HHS
ID : R35 ES028379
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH101814
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM108711
Pays : United States
Organisme : NHGRI NIH HHS
ID : R01 HG008150
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_19009
Pays : United Kingdom
Organisme : NHLBI NIH HHS
ID : R01 HL105756
Pays : United States
Organisme : Medical Research Council
ID : MC_PC_15018
Pays : United Kingdom
Investigateurs
Peter A C 't Hoen
(PAC)
Joyce van Meurs
(J)
Jenny van Dongen
(J)
Maarten van Iterson
(M)
Morris A Swertz
(MA)
Marc Jan Bonder
(M)
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature America, Inc.
Références
Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).
pubmed: 32424349
pmcid: 7276299
doi: 10.1038/s41588-020-0625-2
O’Connor, L. J. et al. Extreme polygenicity of complex traits is explained by negative selection. Am. J. Hum. Genet. 105, 456–476 (2019).
pubmed: 31402091
pmcid: 6732528
doi: 10.1016/j.ajhg.2019.07.003
Zeng, J. et al. Signatures of negative selection in the genetic architecture of human complex traits. Nat. Genet. 50, 746–753 (2018).
pubmed: 29662166
doi: 10.1038/s41588-018-0101-4
Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).
pubmed: 24013639
pmcid: 3991562
doi: 10.1038/ng.2756
Kirsten, H. et al. Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci. Hum. Mol. Genet. 24, 4746–4763 (2015).
pubmed: 26019233
pmcid: 4512630
doi: 10.1093/hmg/ddv194
Lloyd-Jones, L. R. et al. The genetic architecture of gene expression in peripheral blood. Am. J. Hum. Genet. 100, 228–237 (2017).
pubmed: 28065468
pmcid: 5294670
doi: 10.1016/j.ajhg.2016.12.008
Jansen, R. et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 26, 1444–1451 (2017).
pubmed: 28165122
pmcid: 6075455
doi: 10.1093/hmg/ddx043
Joehanes, R. et al. Integrated genome-wide analysis of expression quantitative trait loci aids interpretation of genomic association studies. Genome Biol. 18, 16 (2017).
pubmed: 28122634
pmcid: 5264466
doi: 10.1186/s13059-016-1142-6
Yao, C. et al. Dynamic role of trans regulation of gene expression in relation to complex traits. Am. J. Hum. Genet. 100, 571–580 (2017).
pubmed: 28285768
pmcid: 5384035
doi: 10.1016/j.ajhg.2017.02.003
Brynedal, B. et al. Large-scale trans-eQTLs affect hundreds of transcripts and mediate patterns of transcriptional co-regulation. Am. J. Hum. Genet. 100, 581–591 (2017).
pubmed: 28285767
pmcid: 5384037
doi: 10.1016/j.ajhg.2017.02.004
Lewis, C. M. & Vassos, E. Prospects for using risk scores in polygenic medicine. Genome Med. 9, 96 (2017).
pubmed: 29132412
pmcid: 5683372
doi: 10.1186/s13073-017-0489-y
Natarajan, P. et al. Polygenic risk score identifies subgroup with higher burden of atherosclerosis and greater relative benefit from statin therapy in the primary prevention setting. Circulation 135, 2091–2101 (2017).
pubmed: 28223407
pmcid: 5484076
doi: 10.1161/CIRCULATIONAHA.116.024436
Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).
pubmed: 28622505
pmcid: 5536862
doi: 10.1016/j.cell.2017.05.038
Liu, X., Li, Y. I. & Pritchard, J. K. Trans effects on gene expression can drive omnigenic inheritance. Cell 177, 1022–1034 (2019).
pubmed: 31051098
pmcid: 6553491
doi: 10.1016/j.cell.2019.04.014
Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).
pubmed: 27918533
doi: 10.1038/ng.3737
Bonder, M. J. et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat. Genet. 49, 131–138 (2017).
pubmed: 27918535
doi: 10.1038/ng.3721
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).
Aguet, F. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).
doi: 10.1038/nature24277
Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
pubmed: 27535533
pmcid: 5018207
doi: 10.1038/nature19057
Glassberg, E. C., Gao, Z., Harpak, A., Lan, X. & Pritchard, J. K. Evidence for weak selective constraint on human gene expression. Genetics 211, 757–772 (2019).
pubmed: 30554168
doi: 10.1534/genetics.118.301833
Wu, Y., Zheng, Z., Visscher, P. M. & Yang, J. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data. Genome Biol. 18, 86 (2017).
pubmed: 28506277
pmcid: 5432979
doi: 10.1186/s13059-017-1216-0
Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429 (2016).
pubmed: 27863252
pmcid: 5300907
doi: 10.1016/j.cell.2016.10.042
Melé, M. et al. The human transcriptome across tissues and individuals. Science 348, 660–665 (2015).
pubmed: 25954002
pmcid: 4547472
doi: 10.1126/science.aaa0355
Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nat. Commun. 9, 2282 (2018).
pubmed: 29891976
pmcid: 5995828
doi: 10.1038/s41467-018-04558-1
Marbach, D. et al. Tissue-specific regulatory circuits reveal variable modular perturbations across complex diseases. Nat. Methods 13, 366–370 (2016).
pubmed: 26950747
pmcid: 4967716
doi: 10.1038/nmeth.3799
Li, T. et al. A scored human protein–protein interaction network to catalyze genomic interpretation. Nat. Methods 14, 61–64 (2016).
pubmed: 27892958
pmcid: 5839635
doi: 10.1038/nmeth.4083
Lamparter, D., Marbach, D., Rueedi, R., Kutalik, Z. & Bergmann, S. Fast and rigorous computation of gene and pathway scores from SNP-based summary statistics. PLoS Comput. Biol. 12, e1004714 (2016).
pubmed: 26808494
pmcid: 4726509
doi: 10.1371/journal.pcbi.1004714
Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).
pubmed: 25497547
pmcid: 5635824
doi: 10.1016/j.cell.2014.11.021
Nikpay, M. et al. A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).
pubmed: 26343387
pmcid: 4589895
doi: 10.1038/ng.3396
Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).
pubmed: 26502338
pmcid: 4668589
doi: 10.1038/ng.3434
Davenport, E. E. et al. Discovering in vivo cytokine–eQTL interactions from a lupus clinical trial. Genome Biol. 19, 168 (2018).
pubmed: 30340504
pmcid: 6195724
doi: 10.1186/s13059-018-1560-8
McBride, J. M. et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 64, 3666–3676 (2012).
pubmed: 22833362
doi: 10.1002/art.34632
Yao, Y. et al. Development of potential pharmacodynamic and diagnostic markers for anti-IFN-α monoclonal antibody trials in systemic lupus erythematosus. Hum. Genomics Proteomics 2009, 374312 (2009).
pubmed: 20948567
pmcid: 2950308
Perry, J. R. B. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).
pubmed: 25231870
pmcid: 4185210
doi: 10.1038/nature13545
Lemaitre, R. N. et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet. 7, e1002193 (2011).
pubmed: 21829377
pmcid: 3145614
doi: 10.1371/journal.pgen.1002193
Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).
pubmed: 26192919
pmcid: 4881818
doi: 10.1038/ng.3359
Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).
pubmed: 19838195
pmcid: 2925843
doi: 10.1038/ng.468
Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 363, 1211–1221 (2010).
pubmed: 20860503
pmcid: 4260321
doi: 10.1056/NEJMoa0906312
Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).
pubmed: 25282103
pmcid: 4250049
doi: 10.1038/ng.3097
Van Der Harst, P. et al. Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375 (2012).
pubmed: 23222517
pmcid: 3623669
doi: 10.1038/nature11677
Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
pubmed: 20686565
pmcid: 3039276
doi: 10.1038/nature09270
Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 45, 1274–1285 (2013).
pubmed: 24097068
pmcid: 3838666
doi: 10.1038/ng.2797
Wang, X. et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 117, 2216–2224 (2007).
pubmed: 17657311
pmcid: 1924499
doi: 10.1172/JCI32057
Goldstein, J. L. & Brown, M. S. Binding and degradation of low density lipoproteins by cultured human fibroblasts. Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. Biol. Chem. 249, 5153–5162 (1974).
pubmed: 4368448
doi: 10.1016/S0021-9258(19)42341-7
Singh, A. B., Kan, C. F. K., Shende, V., Dong, B. & Liu, J. A novel posttranscriptional mechanism for dietary cholesterol-mediated suppression of liver LDL receptor expression. J. Lipid Res. 55, 1397–1407 (2014).
pubmed: 24792925
pmcid: 4076078
doi: 10.1194/jlr.M049429
Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).
pubmed: 27005778
pmcid: 4814583
doi: 10.1038/ncomms11122
Shin, S. Y. et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 46, 543–550 (2014).
pubmed: 24816252
pmcid: 4064254
doi: 10.1038/ng.2982
El-Hattab, A. W. Serine biosynthesis and transport defects. Mol. Genet. Metab. 118, 153–159 (2016).
pubmed: 27161889
doi: 10.1016/j.ymgme.2016.04.010
Leuzzi, V., Alessandrì, M. G., Casarano, M., Battini, R. & Cioni, G. Arginine and glycine stimulate creatine synthesis in creatine transporter 1-deficient lymphoblasts. Anal. Biochem. 375, 153–155 (2008).
pubmed: 18258176
doi: 10.1016/j.ab.2008.01.018
Hart, C. E. et al. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet. 80, 931–937 (2007).
pubmed: 17436247
pmcid: 1852735
doi: 10.1086/517888
Klomp, L. W. J. et al. Molecular characterization of 3-phosphoglycerate dehydrogenase deficiency—a neurometabolic disorder associated with reduced L-serine biosynthesis. Am. J. Hum. Genet. 67, 1389–1399 (2000).
pubmed: 11055895
pmcid: 1287916
doi: 10.1086/316886
Shaheen, R. et al. Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am. J. Hum. Genet. 94, 898–904 (2014).
pubmed: 24836451
pmcid: 4121479
doi: 10.1016/j.ajhg.2014.04.015
Price, A. L. et al. Single-tissue and cross-tissue heritability of gene expression via identity-by-descent in related or unrelated individuals. PLoS Genet. 7, e1001317 (2011).
pubmed: 21383966
pmcid: 3044684
doi: 10.1371/journal.pgen.1001317
Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020).
pubmed: 31999256
pmcid: 7067566
doi: 10.7554/eLife.48376
van der Wijst, M. et al. The single-cell eQTLGen consortium. eLife 9, e52155 (2020).
pubmed: 32149610
pmcid: 7077978
doi: 10.7554/eLife.52155
Wang, D. et al. Comprehensive functional genomic resource and integrative model for the human brain. Science 362, eaat8464 (2018).
pubmed: 30545857
pmcid: 6413328
doi: 10.1126/science.aat8464
Feingold, E. A. et al. The ENCODE (ENCyclopedia of DNA Elements) Project. Science 306, 636–640 (2004).
doi: 10.1126/science.1105136
Myers, R. M. et al. A user’s guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biol. 9, e1001046 (2011).
doi: 10.1371/journal.pbio.1001046
Lachmann, A. et al. ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26, 2438–2444 (2010).
pubmed: 20709693
pmcid: 2944209
doi: 10.1093/bioinformatics/btq466
Deelen, P. et al. Genotype Harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC Res. Notes 7, 901 (2014).
pubmed: 25495213
pmcid: 4307387
doi: 10.1186/1756-0500-7-901
Rumble, S. M. et al. SHRiMP: accurate mapping of short color-space reads. PLoS Comput. Biol. 5, e1000386 (2009).
pubmed: 19461883
pmcid: 2678294
doi: 10.1371/journal.pcbi.1000386
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Westra, H. J. et al. MixupMapper: correcting sample mix-ups in genome-wide datasets increases power to detect small genetic effects. Bioinformatics 27, 2104–2111 (2011).
pubmed: 21653519
doi: 10.1093/bioinformatics/btr323
Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).
pubmed: 20196867
pmcid: 2864565
doi: 10.1186/gb-2010-11-3-r25
Zerbino, D. R. et al. Ensembl 2018. Nucleic Acids Res. 46, D754–D761 (2018).
pubmed: 29155950
doi: 10.1093/nar/gkx1098
Zaykin, D. V. Optimally weighted Z-test is a powerful method for combining probabilities in meta-analysis. J. Evol. Biol. 24, 1836–1841 (2011).
pubmed: 21605215
pmcid: 3135688
doi: 10.1111/j.1420-9101.2011.02297.x
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).
pubmed: 27899670
doi: 10.1093/nar/gkw1133
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).
pubmed: 27019110
doi: 10.1038/ng.3538
Chen, E. Y. et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14, 128 (2013).
pubmed: 23586463
pmcid: 3637064
doi: 10.1186/1471-2105-14-128
Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).
pubmed: 27141961
pmcid: 4987924
doi: 10.1093/nar/gkw377
Lachmann, A. et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat. Commun. 9, 1366 (2018).
pubmed: 29636450
pmcid: 5893633
doi: 10.1038/s41467-018-03751-6
Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
pubmed: 22455463
pmcid: 3339379
doi: 10.1089/omi.2011.0118
Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167, 1369–1384 (2016).
pubmed: 27863249
pmcid: 5123897
doi: 10.1016/j.cell.2016.09.037
Schofield, E. C. et al. CHiCP: a web-based tool for the integrative and interactive visualization of promoter capture Hi-C datasets. Bioinformatics 32, 2511–2513 (2016).
pubmed: 27153610
pmcid: 4978926
doi: 10.1093/bioinformatics/btw173
Swertz, M. A. et al. The MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button. BMC Bioinformatics 11, S12 (2010).
pubmed: 21210979
pmcid: 3040526
doi: 10.1186/1471-2105-11-S12-S12