Defect Engineering in Metal‒Organic Frameworks as Futuristic Options for Purification of Pollutants in an Aqueous Environment.
MOFs
defect
environment
removal
water
Journal
Frontiers in chemistry
ISSN: 2296-2646
Titre abrégé: Front Chem
Pays: Switzerland
ID NLM: 101627988
Informations de publication
Date de publication:
2021
2021
Historique:
received:
28
02
2021
accepted:
26
04
2021
entrez:
6
9
2021
pubmed:
7
9
2021
medline:
7
9
2021
Statut:
epublish
Résumé
Clean water scarcity is becoming an increasingly important worldwide issue. The water treatment industry is demanding the development of novel effective materials. Defect engineering in nanoparticles is among the most revolutionary of technologies. Because of their high surface area, structural diversity, and tailorable ability, Metal‒Organic Frameworks (MOFs) can be used for a variety of purposes including separation, storage, sensing, drug delivery, and many other issues. The application in wastewater treatment associated with water stable MOF‒based materials has been an emerging research topic in recent decades. Defect engineering is a sophisticated technique used to manufacture defects and to change the geometric framework of target compounds. Since MOFs have a series of designable structures and active sites, tailoring properties in MOFs by defect engineering is a novel concept. Defect engineering can excavate hidden active sites in MOFs, which can lead to better performance in many fields. Therefore, this technology will open new opportunities in water purification processes. However, there has been little effort to comprehensively discuss this topic. In this review, we provide an overview of the development of defect engineered MOFs for water purification processes. Furthermore, we discuss the potential applications of defect engineered materials.
Identifiants
pubmed: 34485241
doi: 10.3389/fchem.2021.673738
pii: 673738
pmc: PMC8415362
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
673738Informations de copyright
Copyright © 2021 Cao, Mi, Li and Wang.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
J Am Chem Soc. 2020 Mar 11;142(10):4732-4738
pubmed: 32058715
J Am Chem Soc. 2013 Jul 17;135(28):10525-32
pubmed: 23808838
Nature. 2013 Jan 17;493(7432):313-4
pubmed: 23325211
Chem Rev. 2021 Apr 14;121(7):3751-3891
pubmed: 33630582
Environ Sci Technol. 2003 Nov 1;37(21):4962-70
pubmed: 14620824
Adv Sci (Weinh). 2019 Apr 18;6(12):1802373
pubmed: 31380160
Science. 2010 Feb 12;327(5967):846-50
pubmed: 20150497
Chem Soc Rev. 2014 Aug 21;43(16):5933-51
pubmed: 24736674
J Hazard Mater. 2020 Jun 15;392:122164
pubmed: 32086095
J Hazard Mater. 2013 Nov 15;262:189-211
pubmed: 24036145
Water Res. 2016 May 15;95:103-12
pubmed: 26986499
J Colloid Interface Sci. 2016 Sep 15;478:344-52
pubmed: 27318714
Inorg Chem. 2019 Jul 1;58(13):8339-8346
pubmed: 31067043
Nat Commun. 2014 Jun 20;5:4176
pubmed: 24946837
Chem Commun (Camb). 2013 Oct 21;49(82):9449-51
pubmed: 24008272
Chem Soc Rev. 2014 Aug 21;43(16):5513-60
pubmed: 24802634
J Hazard Mater. 2016 Jan 25;302:57-64
pubmed: 26444487
Angew Chem Int Ed Engl. 2013 Jan 2;52(1):401-5
pubmed: 23143805
Phys Chem Chem Phys. 2007 Jun 7;9(21):2676-85
pubmed: 17627311
J Hazard Mater. 2012 Mar 30;209-210:151-7
pubmed: 22277335
Adv Mater. 2018 Sep;30(37):e1703663
pubmed: 29178384
Sci Rep. 2016 Oct 03;6:34462
pubmed: 27695005
Chemistry. 2013 Jan 14;19(3):818-27
pubmed: 23280516
Chem Soc Rev. 2020 Sep 7;49(17):6364-6401
pubmed: 32749390
Environ Sci Technol. 2015 Jul 21;49(14):8657-65
pubmed: 26066631
Inorg Chem. 2014 Jul 7;53(13):6914-9
pubmed: 24903856
Angew Chem Int Ed Engl. 2012 Sep 10;51(37):9267-71
pubmed: 22887718
Acc Chem Res. 2019 Feb 19;52(2):356-366
pubmed: 30571078
Environ Sci Technol. 2005 Apr 1;39(7):2343-8
pubmed: 15871274
Chem Soc Rev. 2014 Aug 21;43(16):5561-93
pubmed: 24604071
Science. 2013 Aug 30;341(6149):1230444
pubmed: 23990564
Dalton Trans. 2020 Dec 21;49(47):17121-17129
pubmed: 33185237
J Am Chem Soc. 2009 Feb 4;131(4):1404-6
pubmed: 19140765
J Am Chem Soc. 2014 Oct 15;136(41):14465-71
pubmed: 25229624
Chem Commun (Camb). 2013 Feb 14;49(13):1276-8
pubmed: 23295434
Angew Chem Int Ed Engl. 2011 Apr 26;50(18):4210-4
pubmed: 21472941
J Environ Manage. 2011 Mar;92(3):407-18
pubmed: 21138785
ACS Appl Mater Interfaces. 2020 Mar 18;12(11):12706-12716
pubmed: 32077683
Environ Sci Technol. 2004 Jul 1;38(13):3659-66
pubmed: 15296318
Chem Soc Rev. 2008 Jan;37(1):191-214
pubmed: 18197340
ACS Appl Mater Interfaces. 2020 May 6;12(18):20234-20242
pubmed: 32285658
J Am Chem Soc. 2014 Jul 9;136(27):9627-36
pubmed: 24915512
Angew Chem Int Ed Engl. 2004 Apr 26;43(18):2334-75
pubmed: 15114565
Angew Chem Int Ed Engl. 2017 Jan 9;56(2):563-567
pubmed: 27930852
J Environ Manage. 2012 Dec 30;113:170-83
pubmed: 23023039
Chemistry. 2017 May 11;23(27):6615-6624
pubmed: 28317183
Angew Chem Int Ed Engl. 2012 May 14;51(20):4887-90
pubmed: 22488675
Chemistry. 2011 Jun 6;17(24):6643-51
pubmed: 21547962
Angew Chem Int Ed Engl. 2015 Jun 15;54(25):7234-54
pubmed: 26036179
Angew Chem Int Ed Engl. 2008;47(44):8525-8
pubmed: 18846529
Chem Commun (Camb). 2018 Jan 4;54(4):370-373
pubmed: 29242856
Adv Mater. 2018 Dec;30(51):e1800702
pubmed: 30247789
J Hazard Mater. 2016 Jun 5;310:235-45
pubmed: 26937870
Chem Soc Rev. 2014 Aug 21;43(16):5415-8
pubmed: 25011480
Environ Sci Technol. 2006 Apr 15;40(8):2771-7
pubmed: 16683622
ACS Appl Mater Interfaces. 2018 Aug 22;10(33):28076-28085
pubmed: 30095886
J Am Chem Soc. 2012 Oct 17;134(41):17286-90
pubmed: 23009199
Chem Rev. 2012 Feb 8;112(2):869-932
pubmed: 21978134
Chem Rev. 2012 Feb 8;112(2):673-4
pubmed: 22280456
Sci Total Environ. 2017 Oct 15;596-597:303-320
pubmed: 28437649