Chemical derivatization strategy for mass spectrometry-based lipidomics.
chemical derivatization
chemical isotope labeling
ion mobility mass spectrometry
lipidomics
mass spectrometry
Journal
Mass spectrometry reviews
ISSN: 1098-2787
Titre abrégé: Mass Spectrom Rev
Pays: United States
ID NLM: 8219702
Informations de publication
Date de publication:
01 2023
01 2023
Historique:
revised:
02
07
2021
received:
03
05
2021
accepted:
15
07
2021
pubmed:
7
9
2021
medline:
2
12
2022
entrez:
6
9
2021
Statut:
ppublish
Résumé
Lipids, serving as the structural components of cellular membranes, energy storage, and signaling molecules, play the essential and multiple roles in biological functions of mammals. Mass spectrometry (MS) is widely accepted as the first choice for lipid analysis, offering good performance in sensitivity, accuracy, and structural characterization. However, the untargeted qualitative profiling and absolute quantitation of lipids are still challenged by great structural diversity and high structural similarity. In recent decade, chemical derivatization mainly targeting carboxyl group and carbon-carbon double bond of lipids have been developed for lipidomic analysis with diverse advantages: (i) offering more characteristic structural information; (ii) improving the analytical performance, including chromatographic separation and MS sensitivity; (iii) providing one-to-one chemical isotope labeling internal standards based on the isotope derivatization regent in quantitative analysis. Moreover, the chemical derivatization strategy has shown great potential in combination with ion mobility mass spectrometry and ambient mass spectrometry. Herein, we summarized the current states and advances in chemical derivatization-assisted MS techniques for lipidomic analysis, and their strengths and challenges are also given. In summary, the chemical derivatization-based lipidomic approach has become a promising and reliable technique for the analysis of lipidome in complex biological samples.
Substances chimiques
Lipids
0
Carbon
7440-44-0
Types de publication
Journal Article
Review
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
432-452Informations de copyright
© 2021 John Wiley & Sons Ltd.
Références
Adibhatla, R.M., Hatcher, J., 2008. Altered lipid metabolism in brain injury and disorders. Lipids in health and disease. Springer, pp. 241-268.
Alley, S.H., Ces, O., Templer, R.H., Barahona, M., 2008. Biophysical regulation of lipid biosynthesis in the plasma membrane. Biophys. J. 94:2938-2954.
Avalli, A., Contarini, G., 2005. Determination of phospholipids in dairy products by SPE/HPLC/ELSD. J. Chromatogr. 1071:185-190.
Azab, S., Ly, R., Britz-McKibbin, P., 2019. Robust method for high-throughput screening of fatty acids by multisegment injection-nonaqueous capillary electrophoresis-mass spectrometry with stringent quality control. Anal. Chem. 91:2329-2336.
Barrientos, R.C., Vu, N., Zhang, Q., 2017. Structural analysis of unsaturated glycosphingolipids using shotgun ozone-induced dissociation mass spectrometry. J. Am. Soc. Mass Spectrom. 28:2330-2343.
Barrientos, R.C., Zhang, Q., 2020. Recent advances in the mass spectrometric analysis of glycosphingolipidome-A review. Anal. Chim. Acta 1132:134-155.
Bednařík, A., Bölsker, S., Soltwisch, J., Dreisewerd, K., 2018. An on-tissue Paternò-Büchi reaction for localization of carbon-carbon double bonds in phospholipids and glycolipids by matrix-assisted laser-desorption-ionization mass-spectrometry imaging. Angew. Chem. Int. Ed. Engl. 57:12092-12096.
Bian, X., Li, N., Tan, B., Sun, B., Guo, M.Q., Huang, G., Fu, L., Hsiao, W.L.W., Liu, L., Wu, J.L., 2018. Polarity-tuning derivatization-LC-MS approach for probing global carboxyl-containing metabolites in colorectal cancer. Anal. Chem. 90:11210-11215.
Bian, X., Sun, B., Zheng, P., Li, N., Wu, J.L., 2017. Derivatization enhanced separation and sensitivity of long chain-free fatty acids: Application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal. Chim. Acta 989:59-70.
Blevins, M.S.,Klein, D.R., Brodbelt, J.S., 2019, Localization of cyclopropane modifications in bacterial lipids via 213 nm ultraviolet photodissociation mass spectrometry. Anal Chem. 91: 6820-6828.
Bligh, E.G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.
Broadhurst, D.I., Kell, D.B., 2006. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics 2:171-196.
Bruinen, A.L., Fisher, G.L., Heeren, R.M., 2017. ToF-SIMS parallel imaging MS/MS of lipid species in thin tissue sections. Imaging mass spectrometry. Springer, pp. 165-173.
Buck, A., Ly, A., Balluff, B., Sun, N., Gorzolka, K., Feuchtinger, A., Janssen, K.P., Kuppen, P.J., van de Velde, C.J., Weirich, G., 2015. High-resolution MALDI-FT-ICR MS imaging for the analysis of metabolites from formalin-fixed, paraffin-embedded clinical tissue samples. J. Pathol. 237:123-132.
Cao, W., Cheng, S., Yang, J., Feng, J., Zhang, W., Li, Z., Chen, Q., Xia, Y., Ouyang, Z., Ma, X., 2020. Large-scale lipid analysis with C=C location and sn-position isomer resolving power. Nat. Commun. 11:375.
Chollet, C., Boutet-Mercey, S., Laboureur, L., Rincon, C., Méjean, M., Jouhet, J., Fenaille, F., Colsch, B., Touboul, D., 2019. Supercritical fluid chromatography coupled to mass spectrometry for lipidomics. J. Mass Spectrom. 54:791-801.
Chong, J., Wishart, D.S., Xia, J., 2019. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinformatics 68:e86.
Djambazova, K.V., Klein, D.R., Migas, L.G., Neumann, E.K., Rivera, E.S., Van de Plas, R., Caprioli, R.M., Spraggins, J.M., 2020. Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry. Anal. Chem. 92:13290-13297.
Eberlin, L.S., Dill, A.L., Golby, A.J., Ligon, K.L., Wiseman, J.M., Cooks, R.G., Agar, N.Y., 2010. Discrimination of human astrocytoma subtypes by lipid analysis using desorption electrospray ionization imaging mass spectrometry. Angew. Chem. Int. Ed. Engl. 122:6089-6092.
Ejsing, C.S., Moehring, T., Bahr, U., Duchoslav, E., Karas, M., Simons, K., Shevchenko, A., 2006. Collision-induced dissociation pathways of yeast sphingolipids and their molecular profiling in total lipid extracts: A study by quadrupole TOF and linear ion trap-orbitrap mass spectrometry. J. Mass Spectrom. 41:372-389.
Ellis, S., Soltwisch, J., Paine, M., Dreisewerd, K., Heeren, R., 2017. Laser post-ionisation combined with a high resolving power orbitrap mass spectrometer for enhanced MALDI-MS imaging of lipids. Chem. Commun. 53:7246-7249.
Fahy, E., 2010. A comprehensive classification system for lipids. J. Lipid Res. 51:1618.
Fahy, E., Sud, M., Cotter, D., Subramaniam, S., 2007. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35:W606-W612.
Feng, Y., Chen, B., Yu, Q., Li, L., 2019. Identification of double bond position isomers in unsaturated lipids by m-CPBA epoxidation and mass spectrometry fragmentation. Anal. Chem. 91:1791-1795.
Folch, J., Lees, M., Stanley, G.S., 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509.
Gabbs, M., Leng, S., Devassy, J.G., Monirujjaman, M., Aukema, H.M., 2015. Advances in our understanding of oxylipins derived from dietary PUFAs. Adv. Nutr. 6:513-540.
Giles, K., Ujma, J., Wildgoose, J., Pringle, S., Richardson, K., Langridge, D., Green, M., 2019. A cyclic ion mobility-mass spectrometry system. Anal. Chem. 91:8564-8573.
Gross, R.W., Han, X.L., 2011. LipidomicS At The Interface Of Structure And Function In Systems Biology. Chem. Biol. 18:284-291.
Guo, K., Li, L., 2010. High-Performance Isotope Labeling For Profiling Carboxylic Acid-containing Metabolites In Biofluids By Mass Spectrometry. Anal. Chem. 82:8789-8793.
Hall, Z., Chu, Y., Griffin, J.L., 2017. Liquid extraction surface analysis mass spectrometry method for identifying the presence and severity of nonalcoholic fatty liver disease. Anal. Chem. 89:5161-5170.
Han, W., Li, L., 2018. Chemical isotope labeling LC-MS for human blood metabolome analysis. Methods Mol. Biol. 1730:213-225.
He, Y., Luo, Y., Chen, H., Chen, J., Fu, Y., Hou, H., Hu, Q., 2019. Profiling of carboxyl-containing metabolites in smokers and non-smokers by stable isotope labeling combined with LC-MS/MS. Anal. Biochem. 569:1-9.
Hines, K.M., May, J.C., McLean, J.A., Xu, L., 2016. Evaluation of collision cross section calibrants for structural analysis of lipids by traveling wave ion mobility-mass spectrometry. Anal. Chem. 88:7329-7336.
Hu, T., Tie, C., Wang, Z., Zhang, J.L., 2017. Highly sensitive and specific derivatization strategy to profile and quantitate eicosanoids by UPLC-MS/MS. Anal. Chim. Acta 950:108-118.
Hu, T., Zhang, J.L., 2018. Mass-spectrometry-based lipidomics. J. Sep. Sci. 41:351-372.
Huang, G., Chen, H., Zhang, X., Cooks, R.G., Ouyang, Z., 2007. Rapid screening of anabolic steroids in urine by reactive desorption electrospray ionization. Anal. Chem. 79:8327-8332.
Huang, Y.Q., Wang, Q.Y., Liu, J.Q., Hao, Y.H., Yuan, B.F., Feng, Y.Q., 2014. Isotope labelling-paired homologous double neutral loss scan-mass spectrometry for profiling of metabolites with a carboxyl group. Analyst 139:3446-3454.
Jackson, S.N., Wang, H.Y.J., Woods, A.S., 2005. Direct profiling of lipid distribution in brain tissue using MALDI-TOFMS. Anal. Chem. 77:4523-4527.
Jarmusch, A.K., Pirro, V., Baird, Z., Hattab, E.M., Cohen-Gadol, A.A., Cooks, R.G., 2016. Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS. Proc. Natl. Acad. Sci. U.S.A. 113:1486-1491.
Jiang, R., Jiao, Y., Zhang, P., Liu, Y., Wang, X., Huang, Y., Zhang, Z., Xu, F., 2017. Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry. Anal. Chem. 89:12223-12230.
Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K., 2017. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45:D353-d361.
Karr, S., 2017. Epidemiology and management of hyperlipidemia. Am. J. Manag. Care 23:S139-s148.
Katajamaa, M., Miettinen, J., Orešič, M., 2006. MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics 22:634-636.
Katajamaa, M., Orešič, M., 2005. Processing methods for differential analysis of LC/MS profile data. BMC Bioinformatics 6:179.
Kiebish, M.A., Han, X., Cheng, H., Lunceford, A., Clarke, C.F., Moon, H., Chuang, J.H., Seyfried, T.N., 2008. Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria. J. Neurochem. 106:299-312.
Kind, T., Liu, K.H., Lee, D.Y., DeFelice, B., Meissen, J.K., Fiehn, O., 2013. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat. Methods 10:755-758.
Klein, D.R., Brodbelt, J.S., 2017. Structural characterization of phosphatidylcholines using 193 nm ultraviolet photodissociation mass spectrometry. Anal. Chem. 89:1516-1522.
Klein, D.R., Feider, C.L., Garza, K.Y., Lin, J.Q., Eberlin, L.S., Brodbelt, J.S., 2018. Desorption electrospray ionization coupled with ultraviolet photodissociation for characterization of phospholipid isomers in tissue sections. Anal. Chem. 90:10100-10104.
Klein, D.R., Holden, D.D., Brodbelt, J.S., 2016. Shotgun analysis of rough-type lipopolysaccharides using ultraviolet photodissociation mass spectrometry. Anal. Chem. 88:1044-1051.
Koelmel, J.P., Kroeger, N.M., Ulmer, C.Z., Bowden, J.A., Patterson, R.E., Cochran, J.A., Beecher, C.W.W., Garrett, T.J., Yost, R.A., 2017. LipidMatch: An automated workflow for rule-based lipid identification using untargeted high-resolution tandem mass spectrometry data. BMC Bioinformatics 18:331.
Kuo, T.H., Chung, H.H., Chang, H.Y., Lin, C.W., Wang, M.Y., Shen, T.L., Hsu, C.C., 2019. Deep lipidomics and molecular imaging of unsaturated lipid isomers: A universal strategy initiated by mCPBA epoxidation. Anal. Chem. 91:11905-11915.
Kyle, J.E., Zhang, X., Weitz, K.K., Monroe, M.E., Ibrahim, Y.M., Moore, R.J., Cha, J., Sun, X.F., Lovelace, E.S., Wagoner, J., Polyak, S.J., Metz, T.O., Dey, S.K., Smith, R.D., Burnum-Johnson, K.E., Baker, E.S., 2016. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:1649-1659.
Landgraf, R.R., Prieto Conaway, M.C., Garrett, T.J., Stacpoole, P.W., Yost, R.A., 2009. Imaging of lipids in spinal cord using intermediate pressure matrix-assisted laser desorption-linear ion trap/Orbitrap MS. Anal. Chem. 81:8488-8495.
Li, J.B., Vosegaard, T., Guo, Z., 2017. Applications of nuclear magnetic resonance in lipid analyses: An emerging powerful tool for lipidomics studies. Prog. Lipid Res. 68:37-56.
Li, W., Zhang, Z., Xu, F., 2018. Twins derivatization-based LC-MS: A promising quantitative tool for metabolomic analysis. Bioanalysis 10:1161-1163.
Liang, H.R., Foltz, R.L., Meng, M., Bennett, P., 2003. Ionization enhancement in atmospheric pressure chemical ionization and suppression in electrospray ionization between target drugs and stable-isotope-labeled internal standards in quantitative liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 17:2815-2821.
Lin, Q., Zhang, D., Xia, Y., 2020. Analysis of ether glycerophosphocholines at the level of C═C locations from human plasma. Analyst 145:513-522.
Löfgren, L., Forsberg, G.B., Ståhlman, M., 2016. The BUME method: A new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci. Rep. 6:27688.
Löfgren, L., Ståhlman, M., Forsberg, G.-B., Saarinen, S., Nilsson, R., Hansson, G.I., 2012. The BUME method: A novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J. Lipid Res. 53:1690-1700.
Ma, X., Chong, L., Tian, R., Shi, R., Hu, T.Y., Ouyang, Z., Xia, Y., 2016. Identification and quantitation of lipid C=C location isomers: A shotgun lipidomics approach enabled by photochemical reaction. Proc. Natl. Acad. Sci. U.S.A. 113:2573-2578.
Ma, X., Xia, Y., 2014. Pinpointing double bonds in lipids by Paterno-Buchi reactions and mass spectrometry. Angew. Chem. Int. Ed. Engl. 53:2592-2596.
Macias, L.A., Feider, C.L., Eberlin, L.S., Brodbelt, J.S., 2019. Hybrid 193 nm ultraviolet photodissociation mass spectrometry localizes cardiolipin unsaturations. Anal. Chem. 91:12509-12516.
Matyash, V., Liebisch, G., Kurzchalia, T.V., Shevchenko, A., Schwudke, D., 2008. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49:1137-1146.
McLaren, J.E., Michael, D.R., Ashlin, T.G., Ramji, D.P., 2011. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res. 50:331-347.
Morrison, L.J., Brodbelt, J.S., 2016. Charge site assignment in native proteins by ultraviolet photodissociation (UVPD) mass spectrometry. Analyst 141:166-176.
Murphy, R.C., Hankin, J.A., Barkley, R.M., 2009. Imaging of lipid species by MALDI mass spectrometry. J. Lipid Res. 50:S317-S322.
Niemelä, P.S., Castillo, S., Sysi-Aho, M., Orešič, M., 2009. Bioinformatics and computational methods for lipidomics. J. Chromatogr. B 877:2855-2862.
Nordström, A., O'Maille, G., Qin, C., Siuzdak, G., 2006. Nonlinear data alignment for UPLC−MS and HPLC−MS based metabolomics: Quantitative analysis of endogenous and exogenous metabolites in human serum. Anal. Chem. 78:3289-3295.
Orešič, M., Hänninen, V.A., Vidal-Puig, A., 2008. Lipidomics: A new window to biomedical frontiers. Trends Biotechnol. 26:647-652.
Paglia, G., Astarita, G., 2017. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat. Protoc. 12:797-813.
Paine, M.R., Poad, B.L., Eijkel, G.B., Marshall, D.L., Blanksby, S.J., Heeren, R.M., Ellis, S.R., 2018. Mass spectrometry imaging with isomeric resolution enabled by ozone-induced dissociation. Angew. Chem. Int. Ed. Engl. 57:10530-10534.
Pallebage-Gamarallage, M.M., Takechi, R., Lam, V., Galloway, S., Dhaliwal, S., Mamo, J.C., 2010. Post-prandial lipid metabolism, lipid-modulating agents and cerebrovascular integrity: Implications for dementia risk. Atheroscler. Suppl. 11:49-54.
Passarelli, M.K., Winograd, N., 2011. Lipid imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS). Biochim. Biophys. Acta - Mol. Cell Biol. Lipids 1811:976-990.
Pellegrino, R.M., Di Veroli, A., Valeri, A., Goracci, L., Cruciani, G., 2014. LC/MS lipid profiling from human serum: A new method for global lipid extraction. Anal. Bioanal. Chem. 406:7937-7948.
Peng, J., Chen, Y.T., Chen, C.L., Li, L., 2014. Development of a universal metabolome-standard method for long-term LC-MS metabolome profiling and its application for bladder cancer urine-metabolite-biomarker discovery. Anal. Chem. 86:6540-6547.
Persson, E., Löfgren, L., Hansson, G., Abrahamsson, B., Lennernäs, H., Nilsson, R., 2007. Simultaneous assessment of lipid classes and bile acids in human intestinal fluid by solid-phase extraction and HPLC methods. J. Lipid Res. 48:242-251.
Pham, H.T., Maccarone, A.T., Campbell, J.L., Mitchell, T.W., Blanksby, S.J., 2013. Ozone-induced dissociation of conjugated lipids reveals significant reaction rate enhancements and characteristic odd-electron product ions. J. Am. Soc. Mass Spectrom. 24:286-296.
Poad, B.L., Green, M.R., Kirk, J.M., Tomczyk, N., Mitchell, T.W., Blanksby, S.J., 2017. High-pressure ozone-induced dissociation for lipid structure elucidation on fast chromatographic timescales. Anal. Chem. 89:4223-4229.
Poad, B.L., Pham, H.T., Thomas, M.C., Nealon, J.R., Campbell, J.L., Mitchell, T.W., Blanksby, S.J., 2010. Ozone-induced dissociation on a modified tandem linear ion-trap: Observations of different reactivity for isomeric lipids. J. Am. Soc. Mass Spectrom. 21:1989-1999.
Poad, B.L.J., Zheng, X., Mitchell, T.W., Smith, R.D., Baker, E.S., Blanksby, S.J., 2018. Online ozonolysis combined with ion mobility-mass spectrometry provides a new platform for lipid isomer analyses. Anal. Chem. 90:1292-1300.
Pulfer, M., Murphy, R.C., 2003. Electrospray mass spectrometry of phospholipids. Mass Spectrom. Rev. 22:332-364.
Racaud, A., Antoine, R., Joly, L., Mesplet, N., Dugourd, P., Lemoine, J., 2009. Wavelength-tunable ultraviolet photodissociation (UVPD) of heparin-derived disaccharides in a linear ion trap. J. Am. Soc. Mass Spectrom. 20:1645-1651.
Rampler, E., Coman, C., Hermann, G., Sickmann, A., Ahrends, R., Koellensperger, G., 2017. LILY-lipidome isotope labeling of yeast: In vivo synthesis of (13)C labeled reference lipids for quantification by mass spectrometry. Analyst 142:1891-1899.
Raz, I., Eldor, R., Cernea, S., Shafrir, E., 2005. Diabetes: Insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metab. Res. Rev. 21:3-14.
Reis, A., Rudnitskaya, A., Blackburn, G. J., Fauzi, N. M., Pitt, A. R., Spickett, C. M., 2013. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 54, 1812-1824.
Rustam, Y.H., Reid, G.E., 2018. Analytical challenges and recent advances in mass spectrometry based lipidomics. Anal. Chem. 90:374-397.
Santoro, A.L., Drummond, R.D., Silva, I.T., Ferreira, S.S., Juliano, L., Vendramini, P.H., Lemos, M., Eberlin, M.N., Andrade, V.P., 2020. In situ DESI-MSI lipidomic profiles of breast cancer molecular subtypes and precursor lesions. Cancer Res. 80:1246-1257.
Santos, C.R., Schulze, A., 2012. Lipid metabolism in cancer. FEBS J. 279:2610-2623.
Sjövall, P., Lausmaa, J., Johansson, B., 2004. Mass spectrometric imaging of lipids in brain tissue. Anal. Chem. 76:4271-4278.
Stokvis, E., Rosing, H., Beijnen, J.H., 2005. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: Necessity or not? Rapid Commun. Mass Spectrom. 19:401-407.
Sun, C., Li, T., Song, X., Huang, L., Zang, Q., Xu, J., Bi, N., Jiao, G., Hao, Y., Chen, Y., Zhang, R., Luo, Z., Li, X., Wang, L., Wang, Z., Song, Y., He, J., Abliz, Z., 2019. Spatially resolved metabolomics to discover tumor-associated metabolic alterations. Proc. Natl. Acad. Sci. U.S.A. 116:52-57.
Sun, C., Liu, W., Geng, Y., Wang, X., 2020. On-tissue derivatization strategy for mass spectrometry imaging of carboxyl-containing metabolites in biological tissues. Anal. Chem. 92:12126-12131.
Tang, K., Shvartsburg, A.A., Lee, H.N., Prior, D.C., Buschbach, M.A., Li, F., Tolmachev, A.V., Anderson, G.A., Smith, R.D., 2005. High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal. Chem. 77:3330-3339.
Tang, S., Cheng, H., Yan, X., 2020. On-demand electrochemical epoxidation in nano-electrospray ionization mass spectrometry to locate carbon-carbon double bonds. Angew. Chem. Int. Ed. Engl. 59:209-214.
Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Murphy, R.C., Blanksby, S.J., 2007. Elucidation of double bond position in unsaturated lipids by ozone electrospray ionization mass spectrometry. Anal. Chem. 79:5013-5022.
Thomas, M.C., Mitchell, T.W., Harman, D.G., Deeley, J.M., Nealon, J.R., Blanksby, S.J., 2008. Ozone-induced dissociation: Elucidation of double bond position within mass-selected lipid ions. Anal. Chem. 80:303-311.
Tsugawa, H., Ikeda, K., Takahashi, M., Satoh, A., Mori, Y., Uchino, H., Okahashi, N., Yamada, Y., Tada, I., Bonini, P., Higashi, Y., Okazaki, Y., Zhou, Z., Zhu, Z.J., Koelmel, J., Cajka, T., Fiehn, O., Saito, K., Arita, M., Arita, M., 2020. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38:1159-1163.
Vasilopoulou, C.G., Sulek, K., Brunner, A.D., Meitei, N.S., Schweiger-Hufnagel, U., Meyer, S.W., Barsch, A., Mann, M., Meier, F., 2020. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat. Commun. 11:331.
Vu, N., Brown, J., Giles, K., Zhang, Q., 2017. Ozone-induced dissociation on a traveling wave high-resolution mass spectrometer for determination of double-bond position in lipids. Rapid Commun. Mass Spectrom. 31:1415-1423.
Wäldchen, F., Becher, S., Esch, P., Kompauer, M., Heiles, S., 2017. Selective phosphatidylcholine double bond fragmentation and localisation using Paternò-Büchi reactions and ultraviolet photodissociation. Analyst 142:4744-4755.
Wäldchen, F., Spengler, B., Heiles, S., 2019. Reactive matrix-assisted laser desorption/ionization mass spectrometry imaging using an intrinsically photoreactive Paternò-Büchi matrix for double-bond localization in isomeric phospholipids. J. Am. Chem. Soc. 141:11816-11820.
Wang, J., Han, X., 2019. Analytical challenges of shotgun lipidomics at different resolution of measurements. Trends Anal. Chem. 121:115697.
Wang, J., Wang, C., Han, X., 2019. Tutorial on lipidomics. Anal. Chim. Acta 1061:28-41.
Wang, M., Ma, L.J., Yang, Y., Xiao, Z.Y., Wan, J.B., 2019. n-3 Polyunsaturated fatty acids for the management of alcoholic liver disease: A critical review. Crit. Rev. Food Sci. Nutr. 59:S116-S129.
Wang, M., Wang, C.Y., Han, R.H., Han, X.L., 2016. Novel advances in shotgun lipidomics for biology and medicine. Prog. Lipid Res. 61:83-108.
Wang, Y., Liu, S.Y., Hu, Y.J., Li, P., Wan, J.B., 2015. Current state of the art of mass spectrometry-based metabolomics studies-A review focusing on wide coverage, high throughput and easy identification. Rsc Adv. 5:78728-78737.
Wei, F., Lamichhane, S., Orešič, M., Hyötyläinen, T., 2019. Lipidomes in health and disease: Analytical strategies and considerations. TrAC, Trends Anal. Chem. 120:115664.
Wei, J., Xiang, L., Li, X., Song, Y., Yang, C., Ji, F., Chung, A.C.K., Li, K., Lin, Z., Cai, Z., 2020. Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. Anal. Chim. Acta 1100:66-74.
West, H., Reid, G.E., 2021. Hybrid 213 nm photodissociation of cationized Sterol lipid ions yield [M](+.) Radical products for improved structural characterization using multistage tandem mass spectrometry. Anal. Chim. Acta 1141:100-109.
Williams, P.E., Klein, D.R., Greer, S.M., Brodbelt, J.S., 2017. Pinpointing double bond and sn-positions in glycerophospholipids via hybrid 193 nm ultraviolet photodissociation (UVPD) mass spectrometry. J. Am. Chem. Soc. 139:15681-15690.
Wishart, D.S., Knox, C., Guo, A.C., Eisner, R., Young, N., Gautam, B., Hau, D.D., Psychogios, N., Dong, E., Bouatra, S., Mandal, R., Sinelnikov, I., Xia, J., Jia, L., Cruz, J.A., Lim, E., Sobsey, C.A., Shrivastava, S., Huang, P., Liu, P., Fang, L., Peng, J., Fradette, R., Cheng, D., Tzur, D., Clements, M., Lewis, A., De Souza, A., Zuniga, A., Dawe, M., Xiong, Y., Clive, D., Greiner, R., Nazyrova, A., Shaykhutdinov, R., Li, L., Vogel, H.J., Forsythe, I., 2009. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 37:D603-D610.
Wu, C., Ifa, D.R., Manicke, N.E., Cooks, R.G., 2009. Rapid, direct analysis of cholesterol by charge labeling in reactive desorption electrospray ionization. Anal. Chem. 81:7618-7624.
Xia, F., Feng, R., Xu, F.G., Su, H., He, C., Hu, Y.J., Wan, J.B., 2019. Quantification of phospholipid fatty acids by chemical isotope labeling coupled with atmospheric pressure gas chromatography quadrupole- time-of-flight mass spectrometry (APGC/Q-TOF MS). Anal. Chim. Acta 1082:86-97.
Xia, F.B., He, C.W., Ren, M., Xu, F.G., Wan, J.B., 2020. Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus. Anal. Chim. Acta 1120:24-35.
Xie, X., Xia, Y., 2019. Analysis of conjugated fatty acid isomers by the Paternò-Büchi reaction and trapped ion mobility mass spectrometry. Anal. Chem. 91:7173-7180.
Xu, H., Boucher, F.R., Nguyen, T.T., Taylor, G.P., Tomlinson, J.J., Ortega, R.A., Simons, B., Schlossmacher, M.G., Saunders-Pullman, R., Shaw, W., Bennett, S.A.L., 2019. DMS as an orthogonal separation to LC/ESI/MS/MS for quantifying isomeric cerebrosides in plasma and cerebrospinal fluid. J. Lipid Res. 60:200-211.
Xu, T., Hu, C., Xuan, Q., Xu, G., 2020. Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal. Chim. Acta 1137:156-169.
Xu, T., Pi, Z., Song, F., Liu, S., Liu, Z., 2018. Benzophenone used as the photochemical reagent for pinpointing C═C locations in unsaturated lipids through shotgun and liquid chromatography-mass spectrometry approaches. Anal. Chim. Acta 1028:32-44.
Yabuno, Y., Hiraga, Y., Takagi, R., Abe, M., 2011. Concentration and temperature dependency of regio- and stereoselectivity in a photochemical [2 + 2] cycloaddition reaction (the Paterno-Buchi reaction): Origin of the hydroxy-group directivity. J. Am. Chem. Soc. 133:2592-2604.
Yang, J., Schmelzer, K., Georgi, K., Hammock, B.D., 2009. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 81:8085-8093.
Yetukuri, L., Ekroos, K., Vidal-Puig, A., Orešič, M., 2008. Informatics and computational strategies for the study of lipids. Mol. Biosyst. 4:121-127.
Yuan, B.F., Zhu, Q.F., Guo, N., Zheng, S.J., Wang, Y.L., Wang, J., Xu, J., Liu, S.J., He, K., Hu, T., Zheng, Y.W., Xu, F.Q., Feng, Y.Q., 2018. Comprehensive profiling of fecal metabolome of mice by integrated chemical isotope labeling-mass spectrometry analysis. Anal. Chem. 90:3512-3520.
Zhang, T.Y., Li, S., Zhu, Q.F., Wang, Q.,Hussain, D., Feng, Y.Q., 2019. Derivatization for liquid chromatography-electrospray ionization-mass spectrometry analysis of small-molecular weight compounds. Trends Anal. Chem. 119: 115608.
Zhang, W., Zhang, D., Chen, Q., Wu, J., Ouyang, Z., Xia, Y., 2019. Online photochemical derivatization enables comprehensive mass spectrometric analysis of unsaturated phospholipid isomers. Nat. Commun. 10:79.
Zhang, X., Yang, N., Ai, D., Zhu, Y., 2015. Systematic metabolomic analysis of eicosanoids after omega-3 polyunsaturated fatty acid supplementation by a highly specific liquid chromatography-tandem mass spectrometry-based method. J. Proteome Res. 14:1843-1853.
Zhao, J., Xie, X., Lin, Q., Ma, X., Su, P., Xia, Y., 2020. Next-generation paterno-buchi reagents for lipid analysis by mass spectrometry. Anal. Chem. 92:13470-13477.
Zhao, S., Li, H., Han, W., Chan, W., Li, L., 2019. Metabolomic coverage of chemical-group-submetabolome analysis: Group classification and four-channel chemical isotope labeling LC-MS. Anal. Chem. 91:12108-12115.
Zhao, S., Li, L., 2018. Dansylhydrazine isotope labeling LC-MS for comprehensive carboxylic acid submetabolome profiling. Anal. Chem. 90:13514-13522.
Zhao, S., Li, L., 2020. Chemical derivatization in LC-MS-based metabolomics study. Trends Anal. Chem. 131:115988.
Zhao, X.E., Zhu, S., Liu, H., 2020. Recent progresses of derivatization approaches in the targeted lipidomics analysis by mass spectrometry. J. Sep. Sci. 43:1838-1846.
Zhao, Y., Zhao, H., Zhao, X., Jia, J., Ma, Q., Zhang, S., Zhang, X., Chiba, H., Hui, S.P., Ma, X., 2017. Identification and quantitation of C=C location isomers of unsaturated fatty acids by epoxidation reaction and tandem mass spectrometry. Anal. Chem. 89:10270-10278.
Zheng, S.J., Liu, S.J., Zhu, Q.F., Guo, N., Wang, Y.L., Yuan, B.F., Feng, Y.Q., 2018. Establishment of liquid chromatography retention index based on chemical labeling for metabolomic analysis. Anal. Chem. 90:8412-8420.
Zhou, Z., Tu, J., Xiong, X., Shen, X., Zhu, Z.J., 2017. LipidCCS: Prediction of collision cross-section values for lipids with high precision to support ion mobility-mass spectrometry-based lipidomics. Anal. Chem. 89:9559-9566.
Zhu, Q.F., Hao, Y.H., Liu, M.Z., Yue, J., Ni, J., Yuan, B.F., Feng, Y.Q., 2015. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. J. Chromatogr. A 1410:154-163.
Zhu, Q.F., Yan, J.W., Gao, Y., Zhang, J.W., Yuan, B.F., Feng, Y.Q., 2017. Highly sensitive determination of fatty acid esters of hydroxyl fatty acids by liquid chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1061-1062:34-40.
Zhu, Q.F., Yan, J.W., Zhang, T.Y., Xiao, H.M., Feng, Y.Q., 2018. Comprehensive screening and identification of fatty acid esters of hydroxy fatty acids in plant tissues by chemical isotope labeling-assisted liquid chromatography-mass spectrometry. Anal. Chem. 90:10056-10063.
Zhu, Q.F., Zhang, T.Y., Qin, L.L., Li, X.M., Zheng, S.J., Feng, Y.Q., 2019. Method to calculate the retention index in hydrophilic interaction liquid chromatography using normal fatty acid derivatives as calibrants. Anal. Chem. 91:6057-6063.
Zhu, Q.F., Zhang, Z., Liu, P., Zheng, S.J., Peng, K., Deng, Q.Y., Zheng, F., Yuan, B.F., Feng, Y.Q., 2016. Analysis of liposoluble carboxylic acids metabolome in human serum by stable isotope labeling coupled with liquid chromatography-mass spectrometry. J. Chromatogr. A 1460:100-109.