Voxel model of a rabbit: assessment of absorbed doses in organs after CT examination performed by two different protocols.
Absorbed dose
CT
MCNP5
Rabbit
Voxel phantom
Journal
Radiation and environmental biophysics
ISSN: 1432-2099
Titre abrégé: Radiat Environ Biophys
Pays: Germany
ID NLM: 0415677
Informations de publication
Date de publication:
11 2021
11 2021
Historique:
received:
24
01
2021
accepted:
21
08
2021
pubmed:
7
9
2021
medline:
14
1
2022
entrez:
6
9
2021
Statut:
ppublish
Résumé
The objective of this work was to assess absorbed doses in organs and tissues of a rabbit, following computed tomography (CT) examinations, using a dedicated 3D voxel model. Absorbed doses in relevant organs were calculated using the MCNP5 Monte Carlo software. Calculations were perfomed for two standard CT protocols, using tube voltages of 110 kVp and 130 kVp. Absorbed doses were calculated in 11 organs and tissues, i.e., skin, bones, brain, muscles, heart, lungs, liver, spleen, kidney, testicles, and fat tissue. The doses ranged from 15.3 to 28.3 mGy, and from 40.2 to 74.3 mGy, in the two investigated protocols. The organs that received the highest dose were bones and kidneys. In contrast, brain and spleen were organs that received the smallest doses. Doses in organs which are stretched along the body did not change significantly with distance. On the other hand, doses in organs which are localized in the body showed maximums and minimums. Using the voxel model, it is possible to calculate the dose distribution in the rabbit's body after CT scans, and study the potential biological effects of CT doses in certain organs. The voxel model presented in this work can be used to calculated doses in all radiation experiments in which rabbits are used as experimental animals.
Identifiants
pubmed: 34487228
doi: 10.1007/s00411-021-00941-7
pii: 10.1007/s00411-021-00941-7
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
631-638Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Ay MR, Zaidi H (2005) Development and validation of MCNP4C-based Monte Carlo simulator for fan- and cone-beam X-ray CT. Phys Med Biol 50:4863–4885
doi: 10.1088/0031-9155/50/20/009
Bazalova M, Verhaegen F (2007) Monte Carlo simulation of a computed tomography X-ray tube. Phys Med Biol 52:5945–5955
doi: 10.1088/0031-9155/52/19/015
BEIR (2006) Committee on the biological effects of ionizing radiation VII, phase 2, health risks from exposure to low levels of ionizing radiation
Caffrey EA, Johansen MP, Higley KA (2016) Voxel modeling of rabbits for use in radiological dose rate calculations. J Environ Radioact 151:480–486
doi: 10.1016/j.jenvrad.2015.04.008
Chen W, Kolditz D, Beister M, Bohle R, Kalender WA (2012) Fast on-site Monte Carlo tool for dose calculations in CT applications. Med Phys 39:2985–2996
doi: 10.1118/1.4711748
De Marco JJ, Cagnon CH, Cody DD, Stevens DM et al (2007) Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Phys Med Biol 52:2583–2597
doi: 10.1088/0031-9155/52/9/017
De Mattos R, Ruby J, Van Hatten RA, Thompson M (2015) Computed tomographic features of clinical and subclinical middle ear disease in domestic rabbits (Oryctolagus cuniculus): 88 cases 2007–2014. Am Vet Med Assoc 246:336–343
doi: 10.2460/javma.246.3.336
Deak P, van Straten M, Shrimpton PC, Zankl M, Kalender WA (2008) Validation of a Monte Carlo tool for patient-specific dose simulations in multi-slice computed tomography. Eur Radiol 18:759–772
doi: 10.1007/s00330-007-0815-7
Dogdas B, Stout D, Chatziioannou AF, Leahy RM (2007) Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys Med Biol 52:577–587
doi: 10.1088/0031-9155/52/3/003
Drees R, Francois CJ, Saunders JH (2014) Invited review—computed tomographic angiography (CTa) of the thoracic cardiovascular system in companion animals. Vet Radiol Ultrasound 55:229–240
doi: 10.1111/vru.12149
Eckerman KF, Cristy M, Ryman JC (1996) The ORNL mathematical phantom series, Oak Ridge National Laboratory Report. Oak Ridge, TN, USA
Eken E, Çorumluoglu Ö, Paksoy Y, Besoluk K, Kalayci I (2009) A study on evaluation of 3D virtual rabbit kidney models by multidetector computed tomography images. Anatomy 3:40–44
doi: 10.2399/ana.09.009
Gualdrini G, Ferrari P (2010) A review of voxel model development and radiation protection applications at ENEA. Radiat Prot Dosim 140:383–390
doi: 10.1093/rpd/ncq124
Gupta A, Lee MS, Kim JH et al (2019) Preclinical voxel-based dosimetry through GATE Monte Carlo simulation using PET/CT imaging of mice. Phys Med Biol 64:095007
doi: 10.1088/1361-6560/ab134b
ICRP 110 (2009) Adult reference computational phantoms. ICRP publication 110 Ann. ICRP 39 3-5. Realistic reference phantoms: an ICRP/ICRU joint effort. Elsevier
ICRP 145 (2020) Adult mesh-type reference computational phantoms. ICRP Publication 145 Ann. ICRP 49(3)
Kinase S (2008) Voxel-based frog phantom for internal dose evaluation. J Nucl Sci Technol 45:1049–1052
doi: 10.1080/18811248.2008.9711891
Konijnenberg WM, Bijster M, de Jong KPE, M, (2004) A stylized computational model of the rat for organ dosimetry in support of preclinical evaluations of peptide receptor radionuclide therapy with
Kramer R, Vieira JW, Khoury HJ, Lima FR, Fuelle D (2003) All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys Med Biol 48:1239–1262
doi: 10.1088/0031-9155/48/10/301
Krstic D, Nikezic D (2007) Input files with ORNL-mathematical phantoms of the human body for MCNP-4B. Comp Phys Commun 76:33–37
doi: 10.1016/j.cpc.2006.06.016
Lee C, Williams JL, Lee C, Bolch WE (2005) The UF series of tomographic computational phantoms of pediatric patients. Med Phys 32:3537–3548
doi: 10.1118/1.2107067
Lee C, Lodwick D, Hurtado J, Pafundi D, Williams JL, Bolch WE (2010) The UF family of reference hybrid phantoms for computational radiation dosimetry. Phys Med Biol 55:339–363
doi: 10.1088/0031-9155/55/2/002
Li X, Samei E, Segars WP et al (2011) Patient-specific radiation dose and cancer risk estimation in CT: part I. Development and validation of a Monte Carlo program. Med Phys 38:397–407
doi: 10.1118/1.3515839
Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, Giles GG, Wallace AB, Anderson PR, Guiver TA, McGale P, Cain TM, Dowty JG, Bickerstafe AC, Darby SC (2013) Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360
doi: 10.1136/bmj.f2360
Mitrović M, Tatalović N, Nikolić-Kokić A, Ciraj-Bjelac O et al (2018) Influence of absorbed radiation dose following computed tomography on the antioxidative status in rabbit testicles. Arch Biol Sci 70:675–680
doi: 10.2298/ABS180413029M
Monte Carlo Team (2003) MCNP—a general Monte Carlo N-particle transport code, version 5 vol I: overview and theory. Los Alamos, NM: Los Alamos National Laboratory; LA-UR-03-198
Müllhaupt D, Wenger S, Kircher P, Pfammatter N, Hatt J-M, Ohlerth S (2017) Computed tomography of the thorax in rabbits: a prospective study in ten clinically healthy New Zealand white rabbits. Acta Vet Scand. https://doi.org/10.1186/s13028-017-0340-x
doi: 10.1186/s13028-017-0340-x
Özkadif S, Eken E (2013) Three-dimensional reconstruction of multidetector computed tomography images of paranasal sinuses of New Zealand rabbits. Turk J Vet Anim Sci 37:675–681
doi: 10.3906/vet-1301-53
Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, Howe NL, Ronckers CM, Rajaraman P, Sir Craft AW, Parker L, Berrington de González A (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505
doi: 10.1016/S0140-6736(12)60815-0
Peixoto PHR, Vieira JW, Yoriyaz H, Lima FRA (2008) Photon and electron absorbed fractions calculated from a new tomographic rat model. Phys Med Biol 53:5343–5355
doi: 10.1088/0031-9155/53/19/005
Rehani MM, Yang K, Melick ER, Heil J, Šalát D, Sensakovic WF, Liu B (2019) Patients undergoing recurrent CT scans: assessing the magnitude. Eur Radiol. https://doi.org/10.1007/s00330-019-06523-y
doi: 10.1007/s00330-019-06523-y
Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51:R287–R301
doi: 10.1088/0031-9155/51/13/R17
Rühm W, Harrison RM (2020) High CT doses return to the agenda. Radiat Environ Biophys 59:3–7
doi: 10.1007/s00411-019-00827-9
Sing S, Kalra MK, Thrall JH, Mahesh M (2011) CT radiation dose reduction by modifying primary factors. J Am Coll Radiol 8:369–372
doi: 10.1016/j.jacr.2011.02.001
Stabin MG, Peterson TE, Holburn GE, Emmons MA (2006) Voxel-based mouse and rat models for internal dose calculations. J Nucl Med 47:655–659
UNSCEAR (2008) Report. United Nations. Sources and effects of ionizing radiation. Volume I: sources; volume II: effects. United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2008 Report. United Nations Sales Publications E.10.XI.3 (2010) and E.11.IX.3 (2011). United Nations, New York
Van Caelenberg IA, De Rycke LM, Hermans K, Verhaert L, van Bree HJ, Gielen IM (2010) PhD Computed tomography and cross-sectional anatomy of the head in healthy rabbits. AJVR 71(3):293–303
doi: 10.2460/ajvr.71.3.293
Vanhove C, Bankstahl JP, Krämer SD, Visser E, Belcari N, Vandenberghe S (2015) Accurate molecular imaging of small animals taking into account animal models, handling, anaesthesia, quality control and imaging system performance. EJNMMI Phys 2:31–56
doi: 10.1186/s40658-015-0135-y
Yeom YS, Choi C, Han H et al (2019) Dose coefficients of mesh-type ICRP reference computational phantoms for idealized external exposures of photons and electrons. Nucl Eng Technol 51:843–852
doi: 10.1016/j.net.2018.12.006
Yeom YS, Choi C, Han H, Choi C, Shin B, Kim CH, Lee C (2020a) Dose coefficients of percentile specific computational phantoms for photon external exposures. Radiat Environ Biophys 59:151–160
doi: 10.1007/s00411-019-00818-w
Yeom YS, Choi C, Han H, Shin B, Nguyen TT, Han MC, Kim CH, Lee C (2020b) Dose coefficients of mesh-type ICRP reference computational phantoms for external exposures of neutrons, protons, and helium Ions. Nucl Eng Technol 52:1545–1556
doi: 10.1016/j.net.2019.12.020
Yu L, Liu X, Leng S et al (2009) Radiation dose reduction in computed tomography: techniques and future perspective. Imaging Med 1:65–84
doi: 10.2217/iim.09.5
Zaidi H, Ay MR (2007) Current status and new horizons in Monte Carlo simulation of X-ray CT scanners. Med Bio Eng Comput 45:809–817
doi: 10.1007/s11517-007-0207-9