Expression of proposed methionine transporters along the gastrointestinal tract of pigs and their regulation by dietary methionine sources.
Intestine
Longitudinal heterogeneity of gene expression
Methionine transport
Stomach
Western blot
qRT-PCR
Journal
Genes & nutrition
ISSN: 1555-8932
Titre abrégé: Genes Nutr
Pays: Germany
ID NLM: 101280108
Informations de publication
Date de publication:
06 Sep 2021
06 Sep 2021
Historique:
received:
27
04
2021
accepted:
25
08
2021
entrez:
7
9
2021
pubmed:
8
9
2021
medline:
8
9
2021
Statut:
epublish
Résumé
Given the key role of methionine (Met) in biological processes like protein translation, methylation, and antioxidant defense, inadequate Met supply can limit performance. This study investigated the effect of different dietary Met sources on the expression profile of various Met transporters along the gastrointestinal tract (GIT) of pigs. A total of 27 pigs received a diet supplemented with 0.21% DL-Met, 0.21% L-Met, or 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). Changes in mRNA expression of B Expression of all investigated transcripts differed significantly along the GIT. B A high expression of several Met transporters in small intestinal segments underlines the primary role of these segments in amino acid absorption; however, some Met transporters show high transcript and protein levels also in large intestine, oral mucosa, and stomach. A diet containing DL-Met has potential to increase apical Met transport in the small intestine, whereas a diet containing DL-HMTBA has potential to increase basolateral Met transport in the small intestine and, partly, other gastrointestinal tissues.
Sections du résumé
BACKGROUND
BACKGROUND
Given the key role of methionine (Met) in biological processes like protein translation, methylation, and antioxidant defense, inadequate Met supply can limit performance. This study investigated the effect of different dietary Met sources on the expression profile of various Met transporters along the gastrointestinal tract (GIT) of pigs.
METHODS
METHODS
A total of 27 pigs received a diet supplemented with 0.21% DL-Met, 0.21% L-Met, or 0.31% DL-2-hydroxy-4-(methylthio)butanoic acid (DL-HMTBA). Changes in mRNA expression of B
RESULTS
RESULTS
Expression of all investigated transcripts differed significantly along the GIT. B
CONCLUSION
CONCLUSIONS
A high expression of several Met transporters in small intestinal segments underlines the primary role of these segments in amino acid absorption; however, some Met transporters show high transcript and protein levels also in large intestine, oral mucosa, and stomach. A diet containing DL-Met has potential to increase apical Met transport in the small intestine, whereas a diet containing DL-HMTBA has potential to increase basolateral Met transport in the small intestine and, partly, other gastrointestinal tissues.
Identifiants
pubmed: 34488623
doi: 10.1186/s12263-021-00694-4
pii: 10.1186/s12263-021-00694-4
pmc: PMC8422629
doi:
Types de publication
Journal Article
Langues
eng
Pagination
14Informations de copyright
© 2021. The Author(s).
Références
J Anim Sci. 2003 Feb;81(2):492-502
pubmed: 12643494
Br J Nutr. 1994 May;71(5):739-52
pubmed: 8054329
J Anim Sci Biotechnol. 2018 Jul 19;9:60
pubmed: 30034802
J Biol Chem. 1999 Aug 20;274(34):23740-5
pubmed: 10446133
J Anim Sci. 1997 Mar;75(3):700-6
pubmed: 9078486
Nutr Res Rev. 2009 Dec;22(2):175-87
pubmed: 19835653
Physiol Rep. 2019 Nov;7(21):e14274
pubmed: 31705630
Br J Nutr. 2012 Aug;108 Suppl 2:S273-81
pubmed: 23107538
Am J Physiol Endocrinol Metab. 2003 Jun;284(6):E1177-80
pubmed: 12569087
J Physiol. 2015 Mar 1;593(5):1273-89
pubmed: 25480797
FASEB J. 1996 Mar;10(4):471-80
pubmed: 8647346
Urol Res. 2008 Feb;36(1):25-9
pubmed: 18074125
J Physiol. 1976 Oct;262(1):151-68
pubmed: 994036
Transl Res. 2015 Jul;166(1):12-27
pubmed: 25655839
J Anim Sci. 2015 Feb;93(2):721-30
pubmed: 26020753
Mol Aspects Med. 2013 Apr-Jun;34(2-3):139-58
pubmed: 23506863
Anim Nutr. 2019 Sep;5(3):241-247
pubmed: 31528725
Animal. 2009 Oct;3(10):1378-86
pubmed: 22444932
Acta Physiol Scand. 2005 Sep;185(1):71-8
pubmed: 16128699
Poult Sci. 2017 Feb 1;96(2):425-439
pubmed: 27578876
J Nutr. 2020 Jul 1;150(7):1782-1789
pubmed: 32359147
J Nutr. 1994 Oct;124(10):1907-16
pubmed: 7931699
J Anim Sci Biotechnol. 2019 Sep 16;10:75
pubmed: 31534715
Ann N Y Acad Sci. 2011 Dec;1245:63-4
pubmed: 22211982
Nutrients. 2019 Nov 18;11(11):
pubmed: 31752111
J Appl Genet. 2010;51(3):299-308
pubmed: 20720304
Amino Acids. 2007 Nov;33(4):547-62
pubmed: 17146590
Chem Biol Interact. 2009 Feb 12;177(3):234-41
pubmed: 18845132
Annu Rev Nutr. 1987;7:361-82
pubmed: 3300739
J Biol Chem. 1996 May 3;271(18):10569-76
pubmed: 8631857
Physiol Rev. 2008 Jan;88(1):249-86
pubmed: 18195088
IUBMB Life. 2016 Dec;68(12):924-934
pubmed: 27753190
Curr Opin Clin Nutr Metab Care. 2006 Jan;9(1):37-41
pubmed: 16444817
Comp Biochem Physiol A Mol Integr Physiol. 2021 May;255:110908
pubmed: 33482339
J Biol Chem. 1992 Aug 5;267(22):15384-90
pubmed: 1379228
Poult Sci. 2018 Jun 1;97(6):2053-2063
pubmed: 29514286
J Nutr. 2000 Jul;130(7):1857S-64S
pubmed: 10867063
Am J Physiol Gastrointest Liver Physiol. 2001 Aug;281(2):G365-70
pubmed: 11447016
Nucl Med Biol. 2012 Nov;39(8):1213-8
pubmed: 22795787
Br J Nutr. 2010 Mar;103(5):643-51
pubmed: 20064283
Microbiology (Reading). 2014 Aug;160(Pt 8):1571-1584
pubmed: 24939187
EMBO J. 1999 Jan 4;18(1):49-57
pubmed: 9878049
Front Biosci (Elite Ed). 2015 Jun 01;7:478-90
pubmed: 25961426
J Nutr. 2005 Jul;135(7):1609-12
pubmed: 15987836
Biochim Biophys Acta. 1995 Aug 23;1238(1):49-56
pubmed: 7654750
Physiol Rep. 2018 Jan;6(1):
pubmed: 29333720
Amino Acids. 2009 May;37(1):105-10
pubmed: 18670730
J Biol Chem. 2005 Mar 25;280(12):12002-11
pubmed: 15659399
J Dairy Sci. 2006 Mar;89(3):1072-80
pubmed: 16507704
FASEB J. 2009 Feb;23(2):464-72
pubmed: 18845767
J Nutr. 2007 Jan;137(1):49-54
pubmed: 17182800
J Membr Biol. 1985;83(1-2):1-13
pubmed: 3923195
Biochem Biophys Res Commun. 2002 Feb 22;291(2):291-5
pubmed: 11846403
J Biol Chem. 1996 Jun 21;271(25):14883-90
pubmed: 8662767