Surface Oxygen Injection in Tin Disulfide Nanosheets for Efficient CO

CO2 electroreduction Formate Oxygen injection Syngas Tin disulfide

Journal

Nano-micro letters
ISSN: 2150-5551
Titre abrégé: Nanomicro Lett
Pays: Germany
ID NLM: 101727940

Informations de publication

Date de publication:
06 Sep 2021
Historique:
received: 19 05 2021
accepted: 12 07 2021
entrez: 7 9 2021
pubmed: 8 9 2021
medline: 8 9 2021
Statut: epublish

Résumé

Surface chemistry modification represents a promising strategy to tailor the adsorption and activation of reaction intermediates for enhancing activity. Herein, we designed a surface oxygen-injection strategy to tune the electronic structure of SnS

Identifiants

pubmed: 34490543
doi: 10.1007/s40820-021-00703-6
pii: 10.1007/s40820-021-00703-6
pmc: PMC8421506
doi:

Types de publication

Journal Article

Langues

eng

Pagination

189

Informations de copyright

© 2021. The Author(s).

Références

H. Li, C. Qiu, S. Ren, Q. Dong, S. Zhang et al., Na
doi: 10.1126/science.aaz6053
J. Gu, C-S. Hsu, L. Bai, H.M. Chen, X. Hu, Atomically dispersed f Fe
doi: 10.1126/science.aaw7515
T. Möller, F. Scholten, T.N. Thanh, I. Sinev, J. Timoshenko et al., Electrocatalytic CO
doi: 10.1002/anie.202007136
K. Jiang, Y. Huang, G. Zeng, F.M. Toma, W.A. Goddard et al., Effects of surface roughness on the electrochemical reduction of CO
doi: 10.1021/acsenergylett.0c00482
W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye et al., Electrocatalytic reduction of CO
doi: 10.1038/s41929-020-0450-0
Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat. Commun. 10(1), 2807 (2019). https://doi.org/10.1038/s41467-019-10819-4
doi: 10.1038/s41467-019-10819-4
G. Wen, D.U. Lee, B. Ren, F.M. Hassan, G. Jiang et al., Orbital interactions in Bi-Sn bimetallic electrocatalysts for highly selective electrochemical CO
doi: 10.1002/aenm.201802427
X. Wei, Y. Li, L. Chen, J. Shi, Formic acid electro-synthesis by concurrent cathodic CO
doi: 10.1002/anie.202012066
Y. Xing, X. Kong, X. Guo, Y. Liu, Q. Li et al., Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO
doi: 10.1002/advs.201902989
F. Li, L. Chen, M. Xue, T. Williams, Y. Zhang et al., Towards a better Sn: Efficient electrocatalytic reduction of CO
doi: 10.1016/j.nanoen.2016.11.004
J. Xu, S. Lai, M. Hu, S. Ge, R. Xie et al., Semimetal 1H-SnS
doi: 10.1002/smtd.202000567
X. Li. S. Dou, J. Wang, X., Investigation of structural evolution of SnO
doi: 10.1002/asia.202000252
X. Zheng, P. De Luna, F.P. García de Arquer, B. Zhang, N. Becknell et al., Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO
Z. Li, A. Cao, Q. Zheng, Y. Fu, T. Wang et al., Elucidation of the synergistic effect of dopants and vacancies on promoted selectivity for CO
J. Wang, S. Ning, M. Luo, D. Xiang, W. Chen et al., In-Sn alloy core-shell nanoparticles: In-doped snox shell enables high stability and activity towards selective formate production from electrochemical reduction of CO
doi: 10.1016/j.apcatb.2021.119979
J. Wu, Y. Xie, S. Du, Z. Ren, P. Yu et al., Heterophase engineering of SnO
doi: 10.1007/s40843-020-1361-3
C. Hu, L. Zhang, L. Li, W. Zhu, W. Deng et al., Theory assisted design of n-doped tin oxides for enhanced electrochemical CO
doi: 10.1007/s11426-019-9474-0
W. Zhang, P. He, C. Wang, T. Ding, T. Chen et al., Operando evidence of Cu
doi: 10.1039/D0TA08369K
W. Guo, X. Tan, J. Bi, L. Xu, D. Yang et al., Atomic indium catalysts for switching CO
doi: 10.1021/jacs.1c00151
I. Grigioni, L.K. Sagar, Y.C. Li, G. Lee, Y. Yan et al., CO
doi: 10.1021/acsenergylett.0c02165
R. Pang, P. Tian, H. Jiang, M. Zhu, X. Su et al., Tracking structural evolution: Operando regenerative CeO
F. Yang, X. Ma, W.-B. Cai, P. Song, W. Xu, Nature of oxygen-containing groups on carbon for high-efficiency electrocatalytic CO
doi: 10.1021/jacs.9b11123
H. Li, N. Xiao, Y. Wang, C. Li, X. Ye et al., Nitrogen-doped tubular carbon foam electrodes for efficient electroreduction of CO
doi: 10.1039/C9TA05904K
R. Daiyan, E.C. Lovell, B. Huang, M. Zubair, J. Leverett et al., Uncovering atomic-scale stability and reactivity in engineered zinc oxide electrocatalysts for controllable syngas production. Adv. Energy Mater. 10(28), 2001381 (2020). https://doi.org/10.1002/aenm.202001381
doi: 10.1002/aenm.202001381
X. Wang, Z. Wang, F.P. Garcia de Arquer, C.-T. Dinh, A. Ozden et al., Efficient electrically powered CO
doi: 10.1038/s41560-020-0607-8
M.S. Xie, B.Y. Xia, Y. Li, Y. Yan, Y. Yang et al., Amino acid modified copper electrodes for the enhanced selective electroreduction of carbon dioxide towards hydrocarbons. Energy Environ. Sci. 9(5), 1687–1695 (2016). https://doi.org/10.1039/C5EE03694A
doi: 10.1039/C5EE03694A
J. Jeong, J.S. Kang, H. Shin, S.H. Lee, J. Jang et al., Self-supported mesoscopic tin oxide nanofilms for electrocatalytic reduction of carbon dioxide to formate. Chem. Commun. 57(28), 3445–3448 (2021). https://doi.org/10.1039/D1CC00927C
doi: 10.1039/D1CC00927C
S. Gao, Y. Lin, X. Jiao, Y. Sun, Q. Luo et al., Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529(7584), 68–71 (2016). https://doi.org/10.1038/nature16455
doi: 10.1038/nature16455
D.H. Won, C.H. Choi, J. Chung, M.W. Chung, E.-H. Kim et al., Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO
doi: 10.1002/cssc.201500694
Y. Wang, Y. W.u, X. Liu, H. Zhang, M. Zhou et al., Atomic sandwiched p-n homojunctions. Angew. Chem. Int. Ed. 60, 3487 (2020). https://doi.org/10.1002/anie.202012734
doi: 10.1002/anie.202012734
A. Zhang, R. He, H. Li, Y. Chen, T. Kong et al., Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO
doi: 10.1002/ange.201806043
M.F. Baruch, J.E. Pander III, J.L. White, A.B. Bocarsly, Mechanistic insights into the reduction of CO
doi: 10.1021/acscatal.5b00402
H. Cheng, S. Liu, J. Zhang, T. Zhou, N. Zhang et al., Surface nitrogen-injection engineering for high formation rate of CO
doi: 10.1021/acs.nanolett.0c02144
Z. Zhang, F. Ahmad, W. Zhao, W. Yan, W. Zhang et al., Enhanced electrocatalytic reduction of CO
doi: 10.1021/acs.nanolett.9b01393
A. Zhang, Y. Liang, H. Li, X. Zhao, Y. Chen et al., Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO
doi: 10.1021/acs.nanolett.9b02782
Z. Chen, M.-R. Gao, N. Duan, J. Zhang, Y.-Q. Zhang et al., Tuning adsorption strength of CO
doi: 10.1016/j.apcatb.2020.119252
K. Fan, H. Zou, Y. Lu, H. Chen, F. Li et al., Direct observation of structural evolution of metal chalcogenide in electrocatalytic water oxidation. ACS Nano 12(12), 12369–12379 (2018). https://doi.org/10.1021/acsnano.8b06312
doi: 10.1021/acsnano.8b06312
S. Jin, Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts? ACS Energy Lett. 2(8), 1937–1938 (2017). https://doi.org/10.1021/acsenergylett.7b00679
A. Dutta, A.K. Samantara, S.K. Dutta, B.K. Jena, N. Pradhan, Surface-oxidized dicobalt phosphide nanoneedles as a nonprecious, durable, and efficient oer catalyst. ACS Energy Lett. 1(1), 169–174 (2016). https://doi.org/10.1021/acsenergylett.6b00144
doi: 10.1021/acsenergylett.6b00144
A. Sivanantham, P. Ganesan, A. Vinu, S. Shanmugam, Surface activation and reconstruction of non-oxide-based catalysts through in situ electrochemical tuning for oxygen evolution reactions in alkaline media. ACS Catal. 10(1), 463–493 (2020). https://doi.org/10.1021/acscatal.9b04216
doi: 10.1021/acscatal.9b04216
O. Mabayoje, A. Shoola, B.R. Wygant, C.B. Mullins, The role of anions in metal chalcogenide oxygen evolution catalysis: electrodeposited thin films of nickel sulfide as “pre-catalysts”. ACS Energy Lett. 1(1), 195–201 (2016). https://doi.org/10.1021/acsenergylett.6b00084
doi: 10.1021/acsenergylett.6b00084
L. Liu, Y. Jiang, H. Zhao, J. Chen, J. Cheng et al., Engineering coexposed {001} and {101} facets in oxygen-deficient TiO2 nanocrystals for enhanced CO2 photoreduction under visible light. ACS Catal. 6(2), 1097–1108 (2016). https://doi.org/10.1021/acscatal.5b02098
doi: 10.1021/acscatal.5b02098
W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang et al., Progress and perspective of electrocatalytic CO
doi: 10.1002/advs.201700275
H. Yang, Y. Hu, J. Chen, M.S. Balogun, P. Fang et al., Intermediates adsorption engineering of CO2 electroreduction reaction in highly selective heterostructure Cu-based electrocatalysts for CO production. Adv. Energy Mater. 9(27), 1901396 (2019). https://doi.org/10.1002/aenm.201901396
doi: 10.1002/aenm.201901396

Auteurs

Tao Chen (T)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.
State Key Laboratory of Environmentally Friendly Energy Materials, School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.

Tong Liu (T)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Tao Ding (T)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Beibei Pang (B)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Lan Wang (L)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.
State Key Laboratory of Environmentally Friendly Energy Materials, School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China.

Xiaokang Liu (X)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Xinyi Shen (X)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Sicong Wang (S)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Dan Wu (D)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Dong Liu (D)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Linlin Cao (L)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.

Qiquan Luo (Q)

Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, People's Republic of China.

Wei Zhang (W)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China. zwei2319@mail.ustc.edu.cn.
School of Materials, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China. zwei2319@mail.ustc.edu.cn.

Wenkun Zhu (W)

State Key Laboratory of Environmentally Friendly Energy Materials, School of National Defense Science and Technology, Southwest University of Science and Technology, Mianyang, 621010, People's Republic of China. zhuwenkun@swust.edu.cn.

Tao Yao (T)

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China. yaot@ustc.edu.cn.

Classifications MeSH