Cross-linked tannase-carbon nanotubes composite in elevating antioxidative potential of green tea extract.

antioxidants composite green tea immobilization multi-walled carbon nanotubes tannase

Journal

Journal of food biochemistry
ISSN: 1745-4514
Titre abrégé: J Food Biochem
Pays: United States
ID NLM: 7706045

Informations de publication

Date de publication:
10 2021
Historique:
revised: 21 08 2021
received: 23 07 2021
accepted: 26 08 2021
pubmed: 8 9 2021
medline: 29 10 2021
entrez: 7 9 2021
Statut: ppublish

Résumé

Multi-walled carbon nanotubes (MWCNT)-tannase composite was investigated as an immobilized biocatalyst on the basis of its facile preparation, low cost, and excellent aqueous dispersibility. Cross-linked tannase enzymes, obtained in the presence of glutaraldehyde, were composited with MWCNT via physical adsorption. Multiple techniques were applied to investigate, and corroborate the successful adsorption of cross-linked tannase onto the MWCNT structure. Green tea infusion extract post-treatment using the composite preparation showed elevated radical scavenging activities relative to the control. Green tea infusion extract exhibited a markedly reduced EC

Identifiants

pubmed: 34490635
doi: 10.1111/jfbc.13924
doi:

Substances chimiques

Antioxidants 0
Nanotubes, Carbon 0
Plant Extracts 0
Tea 0
Carboxylic Ester Hydrolases EC 3.1.1.-
tannase EC 3.1.1.20

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e13924

Informations de copyright

© 2021 Wiley Periodicals LLC.

Références

Aharwar, A., & Parihar, D. K. (2019). Talaromyces verruculosus tannase production, characterization and application in fruit juices detannification. Biocatalysis and Agricultural Biotechnology, 18, 101014. https://doi.org/10.1016/j.bcab.2019.01.052
Ahmad, N. A., Jumbri, K., Ramli, A., Abd Ghani, N., Ahmad, H., & Lim, J. W. (2018). A kinetic approach of DPPH free radical assay of ferulate-based protic ionic liquids (PILs). Molecules, 23(12), 3201. https://doi.org/10.3390/molecules23123201
Ahmad, R., & Khare, S. K. (2018). Immobilization of Aspergillus niger cellulase on multiwall carbon nanotubes for cellulose hydrolysis. Bioresource Technology, 252, 72-75. https://doi.org/10.1016/j.biortech.2017.12.082
Anissi, J., El Hassouni, M., Ouardaoui, A., & Sendide, K. (2014). A comparative study of the antioxidant scavenging activity of green tea, black tea and coffee extracts: A kinetic approach. Food Chemistry, 150, 438-447. https://doi.org/10.1016/j.foodchem.2013.11.009
Atinafu, D. G., Wi, S., Yun, B. Y., & Kim, S. (2021). Engineering biochar with multiwalled carbon nanotube for efficient phase change material encapsulation and thermal energy storage. Energy, 216, 119294. https://doi.org/10.1016/j.energy.2020.119294
Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9(4), 449-454. https://doi.org/10.1016/j.jtusci.2014.11.001
Bartha-Vári, J. H., Bencze, L. C., Bell, E., Poppe, L., Katona, G., Irimie, F.-D., Paizs, C., & Toșa, M. I. (2017). Aminated single-walled carbon nanotubes as carrier for covalent immobilization of phenylalanine ammonia-lyase. Periodica Polytechnica Chemical Engineering, 61(1), 59-66. https://doi.org/10.3311/PPch.10417
Bourkaib, M. C., Guiavarc’h, Y., Chevalot, I., Delaunay, S., Gleize, J., Ghanbaja, J., Valsaque, F., Berrada, N., Desforges, A., & Vigolo, B. (2020). Non-covalent and covalent immobilization of Candida antarctica lipase B on chemically modified multiwalled carbon nanotubes for a green acylation process in supercritical CO2. Catalysis Today, 348, 26-36. https://doi.org/10.1016/j.cattod.2019.08.046
Chandini, S. K., Rao, L. J., Gowthaman, M. K., Haware, D. J., & Subramanian, R. (2011). Enzymatic treatment to improve the quality of black tea extracts. Food Chemistry, 127(3), 1039-1045. https://doi.org/10.1016/j.foodchem.2011.01.078
Chen, Z., Bertin, R., & Froldi, G. (2013). EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Food Chemistry, 138(1), 414-420. https://doi.org/10.1016/j.foodchem.2012.11.001
Choi, E.-H., Rha, C.-S., Balusamy, S. R., Kim, D.-O., & Shim, S.-M. (2019). Impact of bioconversion of gallated catechins and flavonol glycosides on bioaccessibility and intestinal cellular uptake of catechins. Journal of Agricultural and Food Chemistry, 67(8), 2331-2339. https://doi.org/10.1021/acs.jafc.8b05733
Costa, J. B., Lima, M. J., Sampaio, M. J., Neves, M. C., Faria, J. L., Morales-Torres, S., Tavares, A. P. M., & Silva, C. G. (2019). Enhanced biocatalytic sustainability of laccase by immobilization on functionalized carbon nanotubes/polysulfone membranes. Chemical Engineering Journal, 355, 974-985. https://doi.org/10.1016/j.cej.2018.08.178
Crestini, C., & Lange, H. (2015). A novel and efficient immobilised tannase coated by the layer-by-layer technique in the hydrolysis of gallotannins and ellagitannins. Microchemical Journal, 123, 139-147. https://doi.org/10.1016/j.microc.2015.05.025
Curiel, J. A., Betancor, L., de las Rivas, B., Muñoz, R., Guisan, J. M., & Fernández-Lorente, G. (2010). Hydrolysis of tannic acid catalyzed by immobilized-stabilized derivatives of tannase from Lactobacillus plantarum. Journal of Agricultural and Food Chemistry, 58(10), 6403-6409. https://doi.org/10.1021/Jf9044167
de Brito, A. R., Tavares, I. M. D. C., de Carvalho, M. S., de Oliveira, A. J., Salay, L. C., Santos, A. S., dos Anjos, P. N. M., Oliveira, J. R., & Franco, M. (2020). Study of the interaction of the lactase enzyme immobilized in a carbon nanotube matrix for the development of the chemically modified carbon paste electrode. Surfaces and Interfaces, 20, 100592. https://doi.org/10.1016/j.surfin.2020.100592
Dwivedee, B. P., Bhaumik, J., Rai, S. K., Laha, J. K., & Banerjee, U. C. (2017). Development of nanobiocatalysts through the immobilization of Pseudomonas fluorescens lipase for applications in efficient kinetic resolution of racemic compounds. Bioresource Technology, 239, 464-471. https://doi.org/10.1016/j.biortech.2017.05.050
El-Tanash, A. B., Sherief, A. A., & Nour, A. (2011). Catalytic properties of immobilized tannase produced from Aspergillus aculeatus compared with the free enzyme. Brazilian Journal of Chemical Engineering, 28(3), 381-391. https://doi.org/10.1590/S0104-66322011000300004
Goncalves, H. B., Jorge, J. A., Pessela, B. C., Lorente, G. F., Guisan, J. M., & Guimaraes, L. H. S. (2013). Characterization of a tannase from Emericela nidulans immobilized on ionic and covalent supports for propyl gallate synthesis. Biotechnology Letters, 35(4), 591-598. https://doi.org/10.1007/s10529-012-1111-4
Habimana, P., Gao, J., Mwizerwa, J. P., Ndayambaje, J. B., Liu, H., Luan, P., Ma, L. I., & Jiang, Y. (2021). Improvement of laccase activity via covalent immobilization over mesoporous silica coated magnetic multiwalled carbon nanotubes for the discoloration of synthetic dyes. ACS Omega, 6(4), 2777-2789. https://doi.org/10.1021/acsomega.0c05081
Homaei, A., & Samari, F. (2017). Investigation of activity and stability of papain by adsorption on multi-wall carbon nanotubes. International Journal of Biological Macromolecules, 105, 1630-1635. https://doi.org/10.1016/j.ijbiomac.2017.02.038
Hong, Y.-H., Jung, E. Y., Shin, K.-S., Yu, K.-W., Chang, U. J., & Suh, H. J. (2013). Tannase-converted green tea catechins and their anti-wrinkle activity in humans. Journal of Cosmetic Dermatology, 12(2), 137-143. https://doi.org/10.1111/jocd.12038
Jun, L. Y., Mubarak, N. M., Yon, L. S., Bing, C. H., Khalid, M., Jagadish, P., & Abdullah, E. C. (2019). Immobilization of peroxidase on functionalized MWCNTs-buckypaper/polyvinyl alcohol nanocomposite membrane. Scientific Reports, 9(1), 2215. https://doi.org/10.1038/s41598-019-39621-4
Kanpiengjai, A., Unban, K., Nguyen, T.-H., Haltrich, D., & Khanongnuch, C. (2019). Expression and biochemical characterization of a new alkaline tannase from Lactobacillus pentosus. Protein Expression and Purification, 157, 36-41. https://doi.org/10.1016/j.pep.2019.01.005
Kim, B. J., Kang, B. K., Bahk, Y. Y., Yoo, K. H., & Lim, K. J. (2009). Immobilization of horseradish peroxidase on multi-walled carbon nanotubes and its enzymatic stability. Current Applied Physics, 9(4), e263-e265. https://doi.org/10.1016/j.cap.2009.06.050
Kim, B. C., Lee, I., Kwon, S.-J., Wee, Y., Kwon, K. Y., Jeon, C., An, H. J., Jung, H.-T., Ha, S. U., Dordick, J. S., & Kim, J. (2017). Fabrication of enzyme-based coatings on intact multi-walled carbon nanotubes as highly effective electrodes in biofuel cells. Scientific Reports, 7(1), 40202. https://doi.org/10.1038/srep40202
Kim, H.-S., Jeon, D. Y., Javaid, H. M. A., Sahar, N. E., Lee, H.-N., Hong, S.-J., Huh, J. Y., & Kim, Y.-M. (2020). Bio-transformation of green tea infusion with tannase and its improvement on adipocyte metabolism. Enzyme and Microbial Technology, 135, 109496. https://doi.org/10.1016/j.enzmictec.2019.109496
Kim, J. H., Hong, S.-G., Wee, Y., Hu, S., Kwon, Y., Ha, S., & Kim, J. (2017). Enzyme precipitate coating of pyranose oxidase on carbon nanotubes and their electrochemical applications. Biosensors and Bioelectronics, 87, 365-372. https://doi.org/10.1016/j.bios.2016.08.086
Larosa, C., Salerno, M., de Lima, J. S., Merijs Meri, R., da Silva, M. F., de Carvalho, L. B., & Converti, A. (2018). Characterisation of bare and tannase-loaded calcium alginate beads by microscopic, thermogravimetric, FTIR and XRD analyses. International Journal of Biological Macromolecules, 115, 900-906. https://doi.org/10.1016/j.ijbiomac.2018.04.138
Lekshmi, R., Arif Nisha, S., Thirumalai Vasan, P., & Kaleeswaran, B. (2021). A comprehensive review on tannase: Microbes associated production of tannase exploiting tannin rich agro-industrial wastes with special reference to its potential environmental and industrial applications. Environmental Research, 201, 111625. https://doi.org/10.1016/j.envres.2021.111625
Li, J., Xiao, Q., Huang, Y., Ni, H., Wu, C., & Xiao, A. (2017). Tannase application in secondary enzymatic processing of inferior Tieguanyin oolong tea. Electronic Journal of Biotechnology, 28, 87-94. https://doi.org/10.1016/j.ejbt.2017.05.010
Li, R., Fu, G., Liu, C., McClements, D. J., Wan, Y., Wang, S., & Liu, T. (2018). Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. International Journal of Biological Macromolecules, 114, 1134-1143. https://doi.org/10.1016/j.ijbiomac.2018.03.077
Liu, T. P. S. L., Costa, R. M. P. B., Freitas, D. J. D., Nacimento, C. O., Motta, C. M. D., Bezerra, R. P., & Porto, A. L. F. (2017). Tannase from Aspergillus melleus improves the antioxidant activity of green tea: Purification and biochemical characterisation. International Journal of Food Science and Technology, 52(3), 652-661. https://doi.org/10.1111/ijfs.13318
Maity, D., & Kumar, R. T. R. (2019). Highly sensitive amperometric detection of glutamate by glutamic oxidase immobilized Pt nanoparticle decorated multiwalled carbon nanotubes(MWCNTs)/polypyrrole composite. Biosensors and Bioelectronics, 130, 307-314. https://doi.org/10.1016/j.bios.2019.02.001
Martins, I. M., Macedo, G. A., Macedo, J. A., Roberto, B. S., Chen, Q. R., Blumberg, J. B., & Chen, C. Y. O. (2017). Tannase enhances the anti-inflammatory effect of grape pomace in Caco-2 cells treated with IL-1β. Journal of Functional Foods, 29, 69-76. https://doi.org/10.1016/j.jff.2016.12.011
Muslim, D. S. N., Dham, Z. A., & Mohammed, D. N. J. (2017). Synthesis and characterization of nanoparticles conjugated tannase and using it for enhancement of antibacterial activity of tannase produced by Serratia marcescens. Microbial Pathogenesis, 110, 484-493. https://doi.org/10.1016/j.micpath.2017.07.024
Palabhanvi, B., & Belur, P. D. (2013). Enhancing gallic acid content in green tea extract by using novel cell-associated tannase of Bacillus massiliensis. Journal of Food Biochemistry, 37(5), 528-535. https://doi.org/10.1111/jfbc.12003
Prlainović, N. Z., Bezbradica, D. I., Rogan, J. R., Uskoković, P. S., Mijin, D. Ž., & Marinković, A. D. (2016). Surface functionalization of oxidized multi-walled carbon nanotubes: Candida rugosa lipase immobilization. Comptes Rendus Chimie, 19(3), 363-370. https://doi.org/10.1016/j.crci.2015.10.008
Rajnish, K. N., Samuel, M. S., John J, A., Datta, S., Chandrasekar, N., Balaji, R., Jose, S., & Selvarajan, E. (2021). Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. International Journal of Biological Macromolecules, 182, 1793-1802. https://doi.org/10.1016/j.ijbiomac.2021.05.176
Rosolen, M. D., Gennari, A., Volpato, G., & de Souza, C. F. V. (2017). Biocatalytic characterization of Aspergillus oryzae β-galactosidase immobilized on functionalized multi-walled carbon nanotubes. Biocatalysis and Biotransformation, 35(4), 260-268. https://doi.org/10.1080/10242422.2017.1323886
Shah, S., & Gupta, M. N. (2008). Simultaneous refolding, purification and immobilization of xylanase with multi-walled carbon nanotubes. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1784(2), 363-367. https://doi.org/10.1016/j.bbapap.2007.11.015
Sharma, S., Bhat, T. K., & Dawra, R. K. (2000). A spectrophotometric method for assay of tannase using rhodanine. Analytical Biochemistry, 279(1), 85-89. https://doi.org/10.1006/abio.1999.4405
Sheldon, R. A., & van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42(15), 6223-6235. https://doi.org/10.1039/c3cs60075k
Sridhar, K., & Charles, A. L. (2019). In vitro antioxidant activity of Kyoho grape extracts in DPPH and ABTS assays: Estimation methods for EC50 using advanced statistical programs. Food Chemistry, 275, 41-49. https://doi.org/10.1016/j.foodchem.2018.09.040
Tavares, A. P. M., Silva, C. G., Dražić, G., Silva, A. M. T., Loureiro, J. M., & Faria, J. L. (2015). Laccase immobilization over multi-walled carbon nanotubes: Kinetic, thermodynamic and stability studies. Journal of Colloid and Interface Science, 454, 52-60. https://doi.org/10.1016/j.jcis.2015.04.054
Temkov, M., Petrovski, A., Gjorgieva, E., Popovski, E., Lazarova, M., Boev, I., Paunovic, P., Grozdanov, A., Dimitrov, A., Baidak, A., & Krastanov, A. (2019). Inulinase immobilization on polyethylene glycol/polypyrrole multiwall carbon nanotubes producing a catalyst with enhanced thermal and operational stability. Engineering in Life Sciences, 19(9), 617-630. https://doi.org/10.1002/elsc.201900021
Thiyonila, B., Kannan, M., Paulin Reneeta, N., Ramya, T., Kayalvizhi, N., & Krishnan, M. (2020). Influence of tannase from Serratia marcescens strain IMBL5 on enhancing antioxidant properties of green tea. Biocatalysis and Agricultural Biotechnology, 27, 101675. https://doi.org/10.1016/j.bcab.2020.101675
Waikar, M. R., Sonker, R. K., Gupta, S., Chakarvarti, S. K., & Sonkawade, R. G. (2020). Post-γ-irradiation effects on structural, optical and morphological properties of chemical vapour deposited MWCNTs. Materials Science in Semiconductor Processing, 110, 104975. https://doi.org/10.1016/j.mssp.2020.104975
Xu, X.-Y., Meng, J.-M., Mao, Q.-Q., Shang, A. O., Li, B.-Y., Zhao, C.-N., Tang, G.-Y., Cao, S.-Y., Wei, X.-L., Gan, R.-Y., Corke, H., & Li, H.-B. (2019). Effects of tannase and ultrasound treatment on the bioactive compounds and antioxidant activity of green tea extract. Antioxidants, 8(9), 362. https://doi.org/10.3390/antiox8090362
Zdarta, J., Meyer, A. S., Jesionowski, T., & Pinelo, M. (2018). A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts, 8(2), 92. https://doi.org/10.3390/catal8020092
Zhang, C., Luo, S., & Chen, W. (2013). Activity of catalase adsorbed to carbon nanotubes: Effects of carbon nanotube surface properties. Talanta, 113, 142-147. https://doi.org/10.1016/j.talanta.2013.03.027
Zhang, Y. N., Yin, J. F., Chen, J. X., Wang, F., Du, Q. Z., Jiang, Y. W., & Xu, Y. Q. (2016). Improving the sweet aftertaste of green tea infusion with tannase. Food Chemistry, 192, 470-476. https://doi.org/10.1016/j.foodchem.2015.07.046

Auteurs

Chong-Boon Ong (CB)

Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.
School of Science and Psychology, Faculty of Arts and Science, International University of Malaya-Wales, Kuala Lumpur, Malaysia.

Mohamad Suffian Mohamad Annuar (MSM)

Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.

Articles similaires

Fragaria Light Plant Leaves Osmosis Stress, Physiological
Humans Citrus Female Male Aged
Sorghum Antioxidants Phosphorus Fertilizers Flavonoids

Classifications MeSH