The type II histidine triad protein HtpsC facilitates invasion of epithelial cells by highly virulent Streptococcus suis serotype 2.
HtpsC
Streptococcus suis serotype 2
adhesion
epithelial cells
invasion
Journal
Journal of microbiology (Seoul, Korea)
ISSN: 1976-3794
Titre abrégé: J Microbiol
Pays: Korea (South)
ID NLM: 9703165
Informations de publication
Date de publication:
Oct 2021
Oct 2021
Historique:
received:
08
03
2021
accepted:
20
07
2021
revised:
19
07
2021
pubmed:
8
9
2021
medline:
15
12
2021
entrez:
7
9
2021
Statut:
ppublish
Résumé
Streptococcus suis serotype 2 (S. suis 2) is an important zoonotic pathogen that presents a significant threat both to pigs and to workers in the pork industry. The initial steps of S. suis 2 pathogenesis are unclear. In this study, we found that the type II histidine triad protein HtpsC from the highly virulent Chinese isolate 05ZYH33 is structurally similar to internalin A (InlA) from Listeria monocytogenes, which plays an important role in mediating listerial invasion of epithelial cells. To determine if HtpsC and InlA function similarly, an isogenic htpsC mutant (ΔhtpsC) was generated in S. suis by homologous recombination. The htpsC deletion strain exhibited a diminished ability to adhere to and invade epithelial cells from different sources. Double immunofluorescence microscopy also revealed reduced survival of the ΔhtpsC mutant after co-cultivation with epithelium. Adhesion to epithelium and invasion by the wild type strain was inhibited by a monoclonal antibody against E-cadherin. In contrast, the htpsC-deficient mutant was unaffected by the same treatment, suggesting that E-cadherin is the host-cell receptor that interacts with HtpsC and facilitates bacterial internalization. Based on these results, we propose that HtpsC is involved in the process by which S. suis 2 penetrates host epithelial cells, and that this protein is an important virulence factor associated with cell adhesion and invasion.
Identifiants
pubmed: 34491523
doi: 10.1007/s12275-021-1129-1
pii: 10.1007/s12275-021-1129-1
doi:
Substances chimiques
Bacterial Proteins
0
histidine triad protein
0
Hydrolases
EC 3.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
949-957Informations de copyright
© 2021. The Microbiological Society of Korea.
Références
Auger, J.P., Christodoulides, M., Segura, M., Xu, J., and Gottschalk, M. 2015. Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Res. Notes8, 607.
pubmed: 26502903
pmcid: 4624383
doi: 10.1186/s13104-015-1581-2
Benga, L., Goethe, R., Rohde, M., and Valentin-Weigand, P. 2010. Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell. Microbiol.6, 867–881.
doi: 10.1111/j.1462-5822.2004.00409.x
Bennett-Wood, V.R., Carapetis, J.R., and Robins-Browne, R.M. 1998. Ability of clinical isolates of group A streptococci to adhere to and invade HEp-2 epithelial cells. J. Med. Microbiol.47, 899–906.
pubmed: 9788814
doi: 10.1099/00222615-47-10-899
pmcid: 9788814
Bierne, H., Sabet, C., Personnic, N., and Cossart, P. 2007. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect.9, 1156–1166.
pubmed: 17764999
doi: 10.1016/j.micinf.2007.05.003
Bober, M., Mörgelin, M., Olin, A.I., von Pawel-Rammingen, U., and Collin, M. 2011. The membrane bound LRR lipoprotein Slr, and the cell wall-anchored M1 protein from Streptococcus pyogenes both interact with type I collagen. PLoS ONE6, e20345.
pubmed: 21655249
pmcid: 3105044
doi: 10.1371/journal.pone.0020345
Chen, C., Tang, J., Dong, W., Wang, C., Feng, Y., Wang, J., Zheng, F., Pan, X., Liu, D., Li, M., et al. 2007. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PLoS ONE2, e315.
pubmed: 17375201
pmcid: 1820848
doi: 10.1371/journal.pone.0000315
Eshghi, A., Gaultney, R.A., England, P., Brûlé, S., Miras, I., Sato, H., Coburn, J., Bellalou, J., Moriarty, T.J., Haouz, A., et al. 2018. An extracellular Leptospira interrogans leucine-rich repeat protein binds human E- and VE-cadherins. Cell. Microbiol.21, e12949.
pubmed: 30171791
pmcid: 7560960
Ferrando, M.L., De Greeff, A., van Rooijen, W.J.M., Stockhofe-Zurwieden, N., Nielsen, J., Wichgers Schreur, P.J., Nielsen, J., Schreur, P.J.W., Pannekoek, Y., Heuvelink, A., et al. 2015. Host-pathogen interaction at the intestinal mucosa correlates with zoonotic potential of Streptococcus suis. J. Infect. Dis.212, 95–105.
pubmed: 25525050
doi: 10.1093/infdis/jiu813
pmcid: 25525050
Ferrando, M.L. and Schultsz, C. 2016. A hypothetical model of host-pathogen interaction of Streptococcus suis in the gastro-intestinal tract. Gut Microbes7, 154–162.
pubmed: 26900998
pmcid: 4856463
doi: 10.1080/19490976.2016.1144008
Fittipaldi, N., Segura, M., Grenier, D., and Gottschalk, M. 2012. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol.7, 259–279.
pubmed: 22324994
doi: 10.2217/fmb.11.149
pmcid: 22324994
Fouts, D.E., Matthias, M.A., Adhikarla, H., Adler, B., Amorim-Santos, L., Berg, D.E., Bulach, D., Buschiazzo, A., Chang, Y.F., Galloway, R., et al. 2016. What makes a bacterial species pathogenic?: comparative genomic analysis of the genus Leptospira. PLoS Negl. Trop. Dis.10, e0004403.
pubmed: 26890609
pmcid: 4758666
doi: 10.1371/journal.pntd.0004403
Garandeau, C., Réglier-Poupet, H., Dubail, I., Beretti, J.L., Berche, P., and Charbit, A. 2002. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect. Immun.70, 1382–1390.
pubmed: 11854224
pmcid: 127754
doi: 10.1128/IAI.70.3.1382-1390.2002
Hamon, M., Bierne, H., and Cossart, P. 2006. Listeria monocytogenes a multifaceted model. Nat. Rev. Microbiol.4, 423–434.
pubmed: 16710323
doi: 10.1038/nrmicro1413
pmcid: 16710323
Handfield, M., Progulske-Fox, A., and Hillman, J.D. 2005. In vivo induced genes in human diseases. Periodontology 200038, 123–134.
pubmed: 15853939
doi: 10.1111/j.1600-0757.2005.00110.x
pmcid: 15853939
Lalonde, M., Segura, M., Lacouture, S., and Gottschalk, M. 2000. Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiology146, 1913–1921.
pubmed: 10931895
doi: 10.1099/00221287-146-8-1913
pmcid: 10931895
Lecuit, M., Nelson, D.M., Smith, S.D., Khun, H., Huerre, M., Vacher-Lavenu, M.C., Gordon, J.I., and Cossart, P. 2004. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes role of internalin interaction with trophoblast E-cadherin. Proc. Natl. Acad. Sci. USA101, 6152–6157.
pubmed: 15073336
pmcid: 395938
doi: 10.1073/pnas.0401434101
Lecuit, M., Ohayon, H., Braun, L., Mengaud, J., and Cossart, P. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun.65, 5309–5319.
pubmed: 9393831
pmcid: 175764
doi: 10.1128/iai.65.12.5309-5319.1997
Li, M., Shao, Z.Q., Guo, Y., Wang, L., Hou, T., Hu, D., Zheng, F., Tang, J., Wang, C., Feng, Y., et al. 2015. The type II histidine triad protein HtpsC is a novel adhesion with the involvement of Streptococcus suis virulence. Virulence6, 631–641.
pubmed: 26151575
pmcid: 4720241
doi: 10.1080/21505594.2015.1056971
Li, S., Song, J., Huang, H., Chen, W., Li, M., Zhao, Y., Cong, Y., Zhu, J., Rao, X., Hu, X., et al. 2013. Identification of in-vivo induced genes of Streptococcus suis serotype 2 specially expressed in infected human. Microb. Pathog.63, 8–15.
pubmed: 23747686
doi: 10.1016/j.micpath.2013.05.011
pmcid: 23747686
Li, J., Tan, C., Zhou, Y., Fu, S., Hu, L., Hu, J., Chen, H., and Bei, W. 2011. The two-component regulatory system CiaRH contributes to the virulence of Streptococcus suis 2. Vet. Microbiol.148, 99–104.
pubmed: 20832201
doi: 10.1016/j.vetmic.2010.08.005
pmcid: 20832201
Li, M., Wang, C., Feng, Y., Pan, X., Cheng, G., Wang, J., Ge, J., Zheng, F., Cao, M., Dong, Y., et al. 2008. SalK/SalR, a two-component signal transduction system, is essential for full virulence of highly invasive Streptococcus suis serotype 2. PLoS ONE3, e2080.
pubmed: 18461172
pmcid: 2358977
doi: 10.1371/journal.pone.0002080
Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2
pubmed: 11846609
pmcid: 11846609
doi: 10.1006/meth.2001.1262
Liu, H., Zhu, S., Sun, Y., Li, N., Gu, J., Sun, C., Feng, X., Han, W., Jiang, J.X., and Lei, L. 2017. Selection of potential virulence factors contributing to Streptococcus suis serotype 2 penetration into the blood-brain barrier in an in vitro co-culture model. J. Microbiol. Biotechnol.27, 161–170.
pubmed: 27666982
doi: 10.4014/jmb.1606.06018
pmcid: 27666982
Lun, Z.R., Wang, Q.P., Chen, X.G., Li, A.X., and Zhu, X.Q. 2007. Streptococcus suis an emerging zoonotic pathogen. Lancet Infect. Dis.7, 201–209.
pubmed: 17317601
doi: 10.1016/S1473-3099(07)70001-4
pmcid: 17317601
Maddocks, S.E., Jenkins, R.E., Rowlands, R.S., Purdy, K.J., and Cooper, R.A. 2013. Manuka honey inhibits adhesion and invasion of medically important wound bacteria in vitro. Future Microbiol.8, 1523–1536.
pubmed: 24266353
doi: 10.2217/fmb.13.126
pmcid: 24266353
Meng, F., Wu, N.H., Seitz, M., Herrler, G., and Valentin-Weigand, P. 2016. Efficient suilysin-mediated invasion and apoptosis in porcine respiratory epithelial cells after streptococcal infection under air-liquid interface conditions. Sci. Rep.6, 26748.
pubmed: 27229328
pmcid: 4882623
doi: 10.1038/srep26748
Miras, I., Saul, F., Nowakowski, M., Weber, P., Haouz, A., Shepard, W., and Picardeau, M. 2015. Structural characterization of a novel subfamily of leucine-rich repeat proteins from the human pathogen Leptospira interrogans. Acta Cryst.71, 1351–1359.
Ng, A.C., Eisenberg, J.M., Heath, R.J., Huett, A., Robinson, C.M., Nau, G.J., and Xavier, R.J. 2011. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. USA108, 4631–4638.
pubmed: 20616063
doi: 10.1073/pnas.1000093107
pmcid: 20616063
Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng.10, 1–6.
pubmed: 9051728
doi: 10.1093/protein/10.1.1
pmcid: 9051728
Normile, D. 2005. WHO probes deadliness of China’s pig-borne disease. Science309, 1308–1309.
pubmed: 16123268
doi: 10.1126/science.309.5739.1308a
pmcid: 16123268
Norton, P.M., Rolph, C., Ward, P.N., Bentley, R.W., and Leigh, J.A. 1999. Epithelial invasion and cell lysis by virulent strains of Streptococcus suis is enhanced by the presence of suilysin. FEMS Immunol. Med. Microbiol.26, 25–35.
pubmed: 10518040
doi: 10.1111/j.1574-695X.1999.tb01369.x
pmcid: 10518040
Picardeau, M. 2017. Virulence of the zoonotic agent of leptospirosis: still terra incognita? Nat. Rev. Microbiol.15, 297–307.
pubmed: 28260786
doi: 10.1038/nrmicro.2017.5
Pizarro-Cerdá, J., Kühbacher, A., and Cossart, P. 2012. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb. Perspect. Med.2, a010009.
pubmed: 23125201
pmcid: 3543101
doi: 10.1101/cshperspect.a010009
Schwerk, C., Papandreou, T., Schuhmann, D., Nickol, L., Borkowski, J., Steinmann, U., Quednau, N., Stump, C., Weiss C., Berger, J., et al. 2012. Polar invasion and translocation of Neisseria meningitidis and Streptococcus suis in a novel human model of the blood-cerebrospinal fluid barrier. PLoS ONE7, e30069.
pubmed: 22253884
pmcid: 3256222
doi: 10.1371/journal.pone.0030069
Segura, M., Calzas, C., Grenier, D., and Gottschalk, M. 2016. Initial steps of the pathogenesis of the infection caused by Streptococcus suis fighting against nonspecific defenses. FEBS Lett.590, 3772–3799.
pubmed: 27539145
doi: 10.1002/1873-3468.12364
Segura, M., Fittipaldi, N., Calzas, C., and Gottschalk, M. 2017. Critical Streptococcus suis virulence factors: are they all really critical? Trends Microbiol.25, 585–599.
pubmed: 28274524
doi: 10.1016/j.tim.2017.02.005
Seitz, M., Baums, C.G., Neis, C., Benga, L., Fulde, M., Rohde, M., Goethe, R., and Valentin-Weigand, P. 2013. Subcytolytic effects of suilysin on interaction of Streptococcus suis with epithelial cells. Vet. Microbiol.167, 584–591.
pubmed: 24095145
doi: 10.1016/j.vetmic.2013.09.010
Shi, X., Ye, H., Wang, J., Li, Z., Wang, J., Chen, B., Wen, R., Hu, Q., and Feng, Y. 2016. Loss of 89K pathogenicity island in epidemic Streptococcus suis, China. Emerg. Infect. Dis.22, 1126–1127.
pubmed: 27192444
pmcid: 4880084
doi: 10.3201/eid2206.152010
Sriskandan, S. and Slater, J.D. 2006. Invasive disease and toxic shock due to zoonotic Streptococcus suis an emerging infection in the east? PLoS Med.3, e187.
pubmed: 16594733
pmcid: 1434506
doi: 10.1371/journal.pmed.0030187
Staats, J.J., Feder, I., Okwumabua, O., and Chengappa, M.M. 1997. Streptococcus suis past and present. Vet. Res. Commun.21, 381–407.
pubmed: 9266659
doi: 10.1023/A:1005870317757
pmcid: 9266659
Sutcliffe, I.C. and Harrington, D.J. 2002. Pattern searches for the identification of putative lipoprotein genes in Gram-positive bacterial genomes. Microbiology148, 2065–2077.
pubmed: 12101295
doi: 10.1099/00221287-148-7-2065
pmcid: 12101295
Takamatsu, D., Osaki, M., and Sekizaki, T. 2001. Construction and characterization of Streptococcus suis-Escherichia coli shuttle cloning vectors. Plasmid45, 101–113.
pubmed: 11322824
doi: 10.1006/plas.2000.1510
pmcid: 11322824
Tang, J., Wang, C., Feng, Y., Yang, W., Song, H., Chen, Z., Yu, H., Pan, X., Zhou, X., Wang, H., et al. 2006. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PLoS Med.3, e151.
pubmed: 16584289
pmcid: 1434494
doi: 10.1371/journal.pmed.0030151
Valenti-Weigand, P., Benkel, P., Rohde, M., and Chhatwal, G.S. 1996. Entry and intracellular survival of group B streptococci in J774 macrophages. Infect. Immun.64, 2467–2473.
pmcid: 174099
doi: 10.1128/iai.64.7.2467-2473.1996
Vanier, G., Segura, M., Friedl, P., Lacouture, S., and Gottschalk, M. 2004. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect. Immun.72, 1441–1449.
pubmed: 14977949
pmcid: 356020
doi: 10.1128/IAI.72.3.1441-1449.2004
Vanier, G., Segura, M., and Gottschalk, M. 2007. Characterization of the invasion of porcine endothelial cells by Streptococcus suis serotype 2. Can. J. Vet. Res.71, 81–89.
pubmed: 17479770
pmcid: 1829181
Ye, H., Cai, M., Zhang, H., Li, Z., Wen, R., and Feng, Y. 2016. Functional definition of BirA suggests a biotin utilization pathway in the zoonotic pathogen Streptococcus suis. Sci. Rep.6, 26479.
pubmed: 27217336
pmcid: 4877710
doi: 10.1038/srep26479
Zheng, F., Shao, Z.Q., Hao, X., Wu, Q., Li, C., Hou, H., Hu, D., Wang, C., and Pan, X. 2018. Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microb. Pathog.118, 322–329.
pubmed: 29614370
doi: 10.1016/j.micpath.2018.03.061
pmcid: 29614370
Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol.8, 353–360.
pubmed: 15922649
doi: 10.1016/j.pbi.2005.05.004
pmcid: 15922649