Brewer's Spent Grain Enhanced the Recovery of Potential Probiotic Strains in Fermented Milk After Exposure to In Vitro-Simulated Gastrointestinal Conditions.
BSG
Fermented milk
In vitro gastrointestinal resistance
Prebiotic
Probiotic
Synbiotic
Journal
Probiotics and antimicrobial proteins
ISSN: 1867-1314
Titre abrégé: Probiotics Antimicrob Proteins
Pays: United States
ID NLM: 101484100
Informations de publication
Date de publication:
04 2023
04 2023
Historique:
accepted:
19
08
2021
pubmed:
8
9
2021
medline:
22
3
2023
entrez:
7
9
2021
Statut:
ppublish
Résumé
Brewer's spent grain (BSG) is a beer industry by-product with interesting functional properties by its high fiber content and bioactive compounds, which may be possibly employed as a prebiotic ingredient. The fermentability of BSG by ten probiotics and two starter cultures was evaluated, and the co-culture of Lacticaseibacillus paracasei subsp. paracasei F-19® (probiotic) and Streptococcus thermophilus TH-4® (starter) was selected to produce a potentially probiotic fermented milk (FM). Four formulations of FM were studied: FM1 (control), FM2 (probiotic - /BSG +), FM3 (probiotic + /BSG -), and FM4 (probiotic + /BSG +). The viability of the microorganisms in the FM was monitored throughout 28 days of storage. The resistance of the microorganisms in the FM to in vitro-simulated gastrointestinal tract (GIT) conditions was also evaluated. Even though the BSG did not influence the fermentation kinetics or increase the populations of both microorganisms in the FM, a significant improvement on the survival of TH-4® against in vitro-simulated GIT stress was observed in the formulations containing BSG alone or in combination with F-19®. All formulations showed potential as probiotic FM, since total probiotic populations were kept above 10
Identifiants
pubmed: 34491541
doi: 10.1007/s12602-021-09839-8
pii: 10.1007/s12602-021-09839-8
doi:
Substances chimiques
Prebiotics
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
326-337Subventions
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2018/21584-4
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2013/07914-8
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 88881.187323/2018-01
Organisme : Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
ID : 88882.376972-2019-01
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 305380/2019-2
Organisme : Conselho Nacional de Desenvolvimento Científico e Tecnológico
ID : 133799/2018-2
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2019/02583-0
Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2018/24061-2
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
CERVBRASIL – Associcação Brasileira da Indústria da Cerveja (2014) Anuário 2014. http://www.cervbrasil.org.br/arquivos/anuariofinal2014.pdf . Accessed 19 Aug 2015
MAPA – Ministério da Agricultura, Pecurária e Abastecimento (2019) Ministério da Agricultura instala Câmara da Cerveja. https://www.gov.br/pt-br/noticias/agricultura-e-pecuaria/2019/10/ministra-tereza-cristina-instala-camara-da-cerveja . Accessed 12 May 2021
Fărcaş AC, Socaci SA, Dulf FV, Tofană M, Mudura E, Diaconeasa Z (2015) Volatile profile, fatty acids composition and total phenolics content of brewers’ spent grain by-product with potential use in the development of new functional foods. J Cereal Sci 64:34–42. https://doi.org/10.1016/j.jcs.2015.04.003
doi: 10.1016/j.jcs.2015.04.003
Mussatto SI, Dragone G, Roberto IC (2006) Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci 43(1):1–14. https://doi.org/10.1016/j.jcs.2005.06.001
doi: 10.1016/j.jcs.2005.06.001
Stojceska V (2019) Brewer’s spent grain from by-product to health: a rich source of functional ingredients. In: Preedy VR, Watson RR (eds) Flour and breads and their fortification in health and disease prevention. Academic Press, pp 189–198
Robertson JA, I’Anson KJA, Treimo J, Faulds CB, Brocklehurst TF, Eijsink VGH, Waldron KW (2010) Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT-Food Sci Technol 43(6):890–896. https://doi.org/10.1016/j.lwt.2010.01.019
doi: 10.1016/j.lwt.2010.01.019
Sajib M, Falck P, Sardari RRR, Mathew S, Grey C, Karlsson EN, Adlercreutz P (2018) Valorization of brewer’s spent grain to prebiotic oligosaccharide: production, xylanase catalyzed hydrolysis, in vitro evaluation with probiotic strains and in a batch human fecal fermentation model. J Biotechnol 268:61–70. https://doi.org/10.1016/j.jbiotec.2018.01.005
doi: 10.1016/j.jbiotec.2018.01.005
pubmed: 29337072
Ainsworth P, İbanoğlu S, Plunkett A, İbanoğlu E, Stojceska V (2007) Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. J Food Eng 81:702–709. https://doi.org/10.1016/j.jfoodeng.2007.01.004
doi: 10.1016/j.jfoodeng.2007.01.004
Cappa C, Alamprese C (2017) Brewer’s spent grain valorization in fiber-enriched fresh egg pasta production: modelling and optimization study. LWT-Food Sci Technol 87:464–470. https://doi.org/10.1016/j.lwt.2017.04.068
doi: 10.1016/j.lwt.2017.04.068
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502. https://doi.org/10.1038/nrgastro.2017.75
doi: 10.1038/nrgastro.2017.75
pubmed: 28611480
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA (2019) Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 16(10):605–616. https://doi.org/10.1038/s41575-019-0173-3
doi: 10.1038/s41575-019-0173-3
pubmed: 31296969
Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, Gareau M, Murphy EF, Saulnier D, Loh G, Macfarlane S, Delzenne N, Ringel Y, Kozianowski G, Dickmann R, Lenoir-Wijnkoop I, Walver C, Buddington R (2010) Dietary prebiotics: current status and new definition. Food Sci Technol Bull 7(1):1–19. https://doi.org/10.1616/1476-2137.15880
doi: 10.1616/1476-2137.15880
Martinez RCR, Bedani R, Saad SMI (2015) Scientific evidence for health effects attributed to the consumption of probiotics and prebiotics: an update for current perspectives and future challenges. Br J Nutr 114(12):1993–2015. https://doi.org/10.1017/S0007114515003864
doi: 10.1017/S0007114515003864
pubmed: 26443321
Amorim C, Silverio SC, Rodrigues LR (2019) One-step process for producing prebiotic arabino-xylooligosaccharides from brewer’s spent grain employing Trichoderma species. Food Chem 270:86–94. https://doi.org/10.1016/j.foodchem.2018.07.080
doi: 10.1016/j.foodchem.2018.07.080
pubmed: 30174095
Sabater C, Ruiz L, Delgado S, Ruas-Madiedo P, Margolles A (2020) Valorization of vegetable food waste and by-products through fermentation processes. Front Microbiol 11:581997. https://doi.org/10.3389/fmicb.2020.581997
doi: 10.3389/fmicb.2020.581997
pubmed: 33193217
pmcid: 7606337
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66
doi: 10.1038/nrgastro.2014.66
pubmed: 24912386
Ballan R, Battistini C, Xavier-Santos D, Saad SMI (2020) Interactions of probiotics and prebiotics with the gut microbiota. Prog Molec Biol Transl Sci 171:265–300. https://doi.org/10.1016/bs.pmbts.2020.03.008
doi: 10.1016/bs.pmbts.2020.03.008
Gibson GR (2004) Fibre and effects on probiotics (the prebiotic concept). Clin Nutr Suppl 1(2):25–31. https://doi.org/10.1016/j.clnu.2004.09.005
doi: 10.1016/j.clnu.2004.09.005
Ranadheera RDCS, Baines SK, Adams MC (2010) Importance of food in probiotic efficacy. Food Res Int 43(1):1–7. https://doi.org/10.1016/j.foodres.2009.09.009
doi: 10.1016/j.foodres.2009.09.009
Sanders ME, Marco ML (2010) Food formats for effective delivery of probiotics. Annu Rev Food Sci Technol 1(1):65–85. https://doi.org/10.1146/annurev.food.080708.100743
doi: 10.1146/annurev.food.080708.100743
pubmed: 22129330
Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G, Verbeke K, Scott KP, Holscher HD, Azad MB, Delzenne NM, Sanders ME (2020) The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol 17(11):687–701. https://doi.org/10.1038/s41575-020-0344-2
doi: 10.1038/s41575-020-0344-2
pubmed: 32826966
pmcid: 7581511
Bedani R, Rossi EA, Isay Saad SM (2013) Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Food Microbiol 34(2):382–389. https://doi.org/10.1016/j.fm.2013.01.012
doi: 10.1016/j.fm.2013.01.012
pubmed: 23541206
Santos M, Jiménez JJ, Bartolomé B, Gómez-Cordovés C, del Nozal MJ (2003) Variability of brewer’s spent grain within a brewery. Food Chem 80(1):17–21. https://doi.org/10.1016/S0308-8146(02)00229-7
doi: 10.1016/S0308-8146(02)00229-7
West NP, Pyne DB, Cripps AW, Hopkins WG, Eskesen DC, Jairath A, Christophersen CT, Conlon MA, Fricker PA (2011) Lactobacillus fermentum (PCC®) supplementation and gastrointestinal and respiratory-tract illness symptoms: a randomised control trial in athletes. Nutr J 10:30. https://doi.org/10.1186/1475-2891-10-30
doi: 10.1186/1475-2891-10-30
pubmed: 21477383
pmcid: 3083335
Sindhu KNC, Sowmyanarayanan TV, Paul A, Babji S, Ajjampur SSR, Priyadarshini S, Sarkar R, Balasubramanian KA, Wanke CA, Ward HD, Kang G (2014) Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis 58(8):1107–1115. https://doi.org/10.1093/cid/ciu065
doi: 10.1093/cid/ciu065
pubmed: 24501384
pmcid: 3967829
Compare D, Rocco A, Sgamato C, Coccoli P, Campo SMA, Nazionale I, Larussa T, Luzza F, Chiodini P, Nardone G (2015) Lactobacillus paracasei F19 versus placebo for the prevention of proton pump inhibitor-induced bowel symptoms: a randomized clinical trial. Digest Liver Dis 47(4):273–279. https://doi.org/10.1016/j.dld.2015.01.004
doi: 10.1016/j.dld.2015.01.004
Jacobs SE, Tobin JM, Opie GF, Donath S, Tabrizi SN, Pirotta M, Morley CJ, Garland SM (2013) Probiotic effects on late-onset sepsis in very preterm infants: a randomized controlled trial. Pediatrics 132(6):1055–1062. https://doi.org/10.1542/peds.2013-1339
doi: 10.1542/peds.2013-1339
pubmed: 24249817
Ouwehand AC, Bergsma N, Parhiala R, Lahtinen S, Gueimonde M, Finne-Soveri H, Strandberg T, Pitkälä K, Salminen S (2008) Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Mic 53(1):18–25. https://doi.org/10.1111/j.1574-695X.2008.00392.x
doi: 10.1111/j.1574-695X.2008.00392.x
Rizzardini G, Eskesen D, Calder PC, Capetti A, Jespersen L, Clerici M (2012) Evaluation of the immune benefits of two probiotic strains Bifidobacterium animalis ssp. lactis, BB-12® and Lactobacillus paracasei ssp. paracasei, L. casei 431® in an influenza vaccination model: a randomized, double-blind, placebo-controlled study. Br J Nutr 107(6):876–884. https://doi.org/10.1017/S000711451100420X
doi: 10.1017/S000711451100420X
pubmed: 21899798
Vujic G, Knez AJ, Stefanovic VD, Vrbanovic VK (2013) Efficacy of orally applied probiotic capsules for bacterial vaginosis and other vaginal infections: a double-blind, randomized, placebo-controlled study. Eur J Obstet Gyn R B 168(1):75–79. https://doi.org/10.1016/j.ejogrb.2012.12.031
doi: 10.1016/j.ejogrb.2012.12.031
Linn YH, Thu KK, Win NHH (2019) Effect of probiotics for the prevention of acute radiation-induced diarrhoea among cervical cancer patients: a randomized double-blinded placebo-controlled study. Probiotics Antimicrob Proteins 11:638–647
doi: 10.1007/s12602-018-9408-9
pubmed: 29550911
Albuquerque MAC, Bedani R, Vieira ADS, LeBlanc JG, Saad SMI (2016) Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures. Int J Food Microbiol 236:26–32. https://doi.org/10.1016/j.ijfoodmicro.2016.07.008
doi: 10.1016/j.ijfoodmicro.2016.07.008
pubmed: 27442847
Buriti FCA, dos Santos KMO, Sombra VG, Maciel JS, Teixeira Sá DMA, Salles HO, Oliveira G, de Paula RCM, Feitosa JPA, Monteiro Moreira ACO, Moreira RA, Egito AS (2014) Characterisation of partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds as a potential dietary fibre. Food Hydrocoll 35:512–521. https://doi.org/10.1016/j.foodhyd.2013.07.015
doi: 10.1016/j.foodhyd.2013.07.015
Joint FAO/WHO Codex Alimentarius Commission (2018) STANDARD FOR FERMENTED MILKS. http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B243-2003%252FCXS_243e.pdf . Accessed 1 Feb 2021
Instituto Adolfo Lutz (2008) Métodos físico-químicos para análise de alimentos. 4 edn. Instituto Adolfo Lutz, São Paulo, SP
Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099
doi: 10.1139/o59-099
pubmed: 13671378
A.O.A.C. - Association of Official Analytical Chemists (2011) Official methods of analysis of AOAC International. 18 edn. AOAC International, Maryland
Richter RL, Vedamuthu ER (2001) Milk and milk products. In: Downes FP, Ito K (eds) Compendium of methods for the microbiological examination of foods. American Public Health Association, Washington DC, pp 483–495
Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’Toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Ganzle MG, Lebeer S (2020) A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int J Syst Evol Microbiol 70(4):2782–2858. https://doi.org/10.1099/ijsem.0.004107
doi: 10.1099/ijsem.0.004107
pubmed: 32293557
Buriti FCA, Cardarelli HR, Saad SMI (2007) Biopreservation by Lactobacillus paracasei in coculture with Streptococcus thermophilus in potentially probiotic and synbiotic fresh cream cheeses. J Food Prot 70(1):228–235. https://doi.org/10.4315/0362-028x-70.1.228
doi: 10.4315/0362-028x-70.1.228
pubmed: 17265887
Padilha M, Villarreal Morales ML, Vieira ADS, Costa MGM, Saad SMI (2016) A prebiotic mixture improved Lactobacillus acidophilus and Bifidobacterium animalis gastrointestinal in vitro resistance in petit-suisse. Food Funct 7(5):2312–2319. https://doi.org/10.1039/c5fo01592h
doi: 10.1039/c5fo01592h
pubmed: 27112363
Villarreal MLM, Padilha M, Vieira ADS, Franco BDGM, Martinez RCR, Saad SMI (2013) Advantageous direct quantification of viable closely related probiotics in petit-suisse cheeses under in vitro gastrointestinal conditions by propidium monoazide–qPCR. PLoS One 8(12):e82102. https://doi.org/10.1371/journal.pone.0082102
doi: 10.1371/journal.pone.0082102
pubmed: 24358142
pmcid: 3866109
Arena MP, Caggianiello G, Fiocco D, Russo P, Torelli M, Spano G, Capozzi V (2014) Barley beta-glucans-containing food enhances probiotic performances of beneficial bacteria. Int J Mol Sci 15(2):3025–3039. https://doi.org/10.3390/ijms15023025
doi: 10.3390/ijms15023025
pubmed: 24562330
pmcid: 3958897
Gomez B, Miguez B, Veiga A, Parajo JC, Alonso JL (2015) Production, purification, and in vitro evaluation of the prebiotic potential of arabinoxylooligosaccharides from brewer’s spent grain. J Agric Food Chem 63(38):8429–8438. https://doi.org/10.1021/acs.jafc.5b03132
doi: 10.1021/acs.jafc.5b03132
pubmed: 26345203
Shen RL, Dang XY, Dong JL, Hu XZ (2012) Effects of oat beta-glucan and barley beta-glucan on fecal characteristics, intestinal microflora, and intestinal bacterial metabolites in rats. J Agric Food Chem 60(45):11301–11308. https://doi.org/10.1021/jf302824h
doi: 10.1021/jf302824h
pubmed: 23113683
Pallin A, Agback P, Jonsson H, Roos S (2016) Evaluation of growth, metabolism and production of potentially bioactive components during fermentation of barley with Lactobacillus reuteri. Food Microbiol 57:159–171. https://doi.org/10.1016/j.fm.2016.02.011
doi: 10.1016/j.fm.2016.02.011
pubmed: 27052715
Cui Y, Xu T, Qu X, Hu T, Jiang X, Zhao C (2016) New insights into various production characteristics of Streptococcus thermophilus strains. Int J Mol Sci 17(10):1701. https://doi.org/10.3390/ijms17101701
doi: 10.3390/ijms17101701
pubmed: 27754312
pmcid: 5085733
De Souza Oliveira RP, Perego P, Converti A, De Oliveira MN (2009) Growth and acidification performance of probiotics in pure culture and co-culture with Streptococcus thermophilus: the effect of inulin. LWT-Food Sci Technol 42(5):1015–1021. https://doi.org/10.1016/j.lwt.2009.01.002
doi: 10.1016/j.lwt.2009.01.002
Casarotti SN, Penna ALB (2015) Acidification profile, probiotic in vitro gastrointestinal tolerance and viability in fermented milk with fruits flours. Int Dairy J 41:1–6
doi: 10.1016/j.idairyj.2014.08.021
Sousa BMS, Borgonovi TF, Casarotti SN, Todorov SD, Penna ALB (2019) Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarela cheese: probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob Proteins 11:382–396
doi: 10.1007/s12602-018-9406-y
Health Canada (2019) Probiotic Claims. http://www.inspection.gc.ca/food/requirements/labelling/-f-for-industry/former-health-claims/eng/1514559099172/1514559100331?chap=9#s21c9 . Accessed 29 Jun 2020
Ouwehand AC (2017) A review of dose-responses of probiotics in human studies. Benef Microbes 8(2):143–151. https://doi.org/10.3920/BM2016.0140
doi: 10.3920/BM2016.0140
pubmed: 28008787
Bertazzoni E, Donelli G, Midtvedt T, Nicoli J, Sanz Y (2013) Probiotics and clinical effects: is the number what counts? J Chemother 25(4):193–212. https://doi.org/10.1179/1973947813Y.0000000078
doi: 10.1179/1973947813Y.0000000078
pubmed: 23906073
Crittenden R, Saarela M, Mättö J, Ouwehand AC, Salminen S, Pelto L, Vaughan EE, De Vos WM, Von Wright A, Fondén R, Mattila-Sandholm T (2002) Lactobacillus paracasei subsp. paracasei F19: survival, ecology and safety in the human intestinal tract - a survey of feeding studies within the PROBDEMO Project. Microb Ecol Health Dis 14(1):22–26. https://doi.org/10.1080/089106002760003314
doi: 10.1080/089106002760003314
Di Cerbo A, Palmieri B (2013) Lactobacillus paracasei subsp. paracasei F19; a farmacogenomic and clinical update. Nutr Hosp 28(6):1842–1850. https://doi.org/10.3305/nh.2013.28.6.6831
doi: 10.3305/nh.2013.28.6.6831
pubmed: 24506359
Lombardo L, Vernetto A, Blanco I (2009) Clinical evaluation of Lactobacillus paracasei subsp. paracasei F19 with gluco-oligosaccharides in the short-term treatment of irritable bowel syndrome. Microb Ecol Health Dis 21(1):28–32. https://doi.org/10.1080/08910600802610815
doi: 10.1080/08910600802610815
Mättö J, Fondén R, Tolvanen T, von Wright A, Vilpponen-Salmela T, Satokari R, Saarela M (2006) Intestinal survival and persistence of probiotic Lactobacillus and Bifidobacterium strains administered in triple-strain yoghurt. Int Dairy J 16(10):1174–1180. https://doi.org/10.1016/j.idairyj.2005.10.007
doi: 10.1016/j.idairyj.2005.10.007
Falentin H, Henaff N, Le Bivic P, Deutsch SM, Parayre S, Richoux R, Sohier D, Thierry A, Lortal S, Postollec F (2012) Reverse transcription quantitative PCR revealed persistency of thermophilic lactic acid bacteria metabolic activity until the end of the ripening of Emmental cheese. Food Microbiol 29(1):132–140. https://doi.org/10.1016/j.fm.2011.09.009
doi: 10.1016/j.fm.2011.09.009
pubmed: 22029927
Sieuwerts A, Håkansson J (2016) Development of a standardized method for the quantification of Lactobacillus paracasei F19 in stool samples of various ages. EC Nutrition 3(3):633–642
Vinderola CG, Prosello W, Ghiberto TD, Reinheimer JA (2000) Viability of probiotic (Bifidobacterium, Lactobacillus acidophilus and Lactobacillus casei) and nonprobiotic microflora in Argentinian Fresco cheese. J Dairy Sci 83(9):1905–1911. https://doi.org/10.3168/jds.s0022-0302(00)75065-x
doi: 10.3168/jds.s0022-0302(00)75065-x
pubmed: 11003217
IDF – International Dairy Federation (1995) Fermented and non-fermented milk products: detection and enumeration of Lactobacillus acidophilus. Bulletin of the International Dairy Federation 306:23–33