Automated Registration-Based Temporal Bone Computed Tomography Segmentation for Applications in Neurotologic Surgery.
atlas
automated segmentation
data set curation
temporal bone
Journal
Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery
ISSN: 1097-6817
Titre abrégé: Otolaryngol Head Neck Surg
Pays: England
ID NLM: 8508176
Informations de publication
Date de publication:
07 2022
07 2022
Historique:
pubmed:
8
9
2021
medline:
7
7
2022
entrez:
7
9
2021
Statut:
ppublish
Résumé
This study investigates the accuracy of an automated method to rapidly segment relevant temporal bone anatomy from cone beam computed tomography (CT) images. Implementation of this segmentation pipeline has potential to improve surgical safety and decrease operative time by augmenting preoperative planning and interfacing with image-guided robotic surgical systems. Descriptive study of predicted segmentations. Academic institution. We have developed a computational pipeline based on the symmetric normalization registration method that predicts segmentations of anatomic structures in temporal bone CT scans using a labeled atlas. To evaluate accuracy, we created a data set by manually labeling relevant anatomic structures (eg, ossicles, labyrinth, facial nerve, external auditory canal, dura) for 16 deidentified high-resolution cone beam temporal bone CT images. Automated segmentations from this pipeline were compared against ground-truth manual segmentations by using modified Hausdorff distances and Dice scores. Runtimes were documented to determine the computational requirements of this method. Modified Hausdorff distances and Dice scores between predicted and ground-truth labels were as follows: malleus (0.100 ± 0.054 mm; Dice, 0.827 ± 0.068), incus (0.100 ± 0.033 mm; Dice, 0.837 ± 0.068), stapes (0.157 ± 0.048 mm; Dice, 0.358 ± 0.100), labyrinth (0.169 ± 0.100 mm; Dice, 0.838 ± 0.060), and facial nerve (0.522 ± 0.278 mm; Dice, 0.567 ± 0.130). A quad-core 16GB RAM workstation completed this segmentation pipeline in 10 minutes. We demonstrated submillimeter accuracy for automated segmentation of temporal bone anatomy when compared against hand-segmented ground truth using our template registration pipeline. This method is not dependent on the training data volume that plagues many complex deep learning models. Favorable runtime and low computational requirements underscore this method's translational potential.
Identifiants
pubmed: 34491849
doi: 10.1177/01945998211044982
pmc: PMC10072909
mid: NIHMS1880178
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
133-140Subventions
Organisme : NIDCD NIH HHS
ID : K08 DC019708
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM136577
Pays : United States
Références
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1937-1944
pubmed: 28852952
Med Image Anal. 2018 Dec;50:54-64
pubmed: 30208356
HNO. 2011 Oct;59(10):974-9
pubmed: 21858517
BMC Med Imaging. 2015 Aug 12;15:29
pubmed: 26263899
Sci Rep. 2021 Jan 8;11(1):116
pubmed: 33420386
Acta Otolaryngol. 2013 Oct;133(10):1012-21
pubmed: 23768013
Proc SPIE Int Soc Opt Eng. 2016 Feb-Mar;9784:
pubmed: 29238119
Neural Netw. 2020 Apr;124:75-85
pubmed: 32004922
Comput Assist Surg (Abingdon). 2019 Dec;24(1):13-17
pubmed: 30821536
Otolaryngol Head Neck Surg. 2019 Nov;161(5):852-855
pubmed: 31331246
GMS Curr Top Otorhinolaryngol Head Neck Surg. 2013 Dec 13;12:Doc05
pubmed: 24403973
Acad Radiol. 2004 Feb;11(2):178-89
pubmed: 14974593
Otolaryngol Head Neck Surg. 2007 Jun;136(6):978-81
pubmed: 17547991
World Neurosurg. 2015 Apr;83(4):560-6
pubmed: 25514617
IEEE Trans Image Process. 2021;30:739-753
pubmed: 33226942
Laryngoscope. 2017 Nov;127(11):2495-2500
pubmed: 28581249
Laryngoscope. 2003 Aug;113(8):1344-6
pubmed: 12897556
Acta Otolaryngol. 2017 Apr;137(4):447-454
pubmed: 28145157
Neurosurgery. 2019 Jun 1;84(6):1179-1189
pubmed: 30615160
Neuroimage. 2011 Feb 1;54(3):2033-44
pubmed: 20851191
J Otolaryngol Head Neck Surg. 2019 Jan 11;48(1):2
pubmed: 30635049
Int J Comput Assist Radiol Surg. 2019 Jun;14(6):967-976
pubmed: 30888596