Dynamics of dipole in a stationary non-homogeneous electromagnetic field.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
07 Sep 2021
Historique:
received: 17 06 2021
accepted: 18 08 2021
entrez: 8 9 2021
pubmed: 9 9 2021
medline: 9 9 2021
Statut: epublish

Résumé

The non-relativistic equations of motion for a dipole in a stationary non-homogeneous electromagnetic field are derived and analysed. It is shown that they are Hamiltonian with respect to a certain degenerated Poisson structure. Described by them dynamics is complex because the motion of the centre of mass of the dipole is coupled with its rotational motion. The problem of the existence of linear in momenta first integrals which can be useful for the separation of rotational motion is discussed. The presence of such first integral appears to be related with a linear symmetry of electric and magnetic fields. Also results of search of quadratic in momenta first integrals for uniform and stationary electromagnetic fields are reported. Deriving equations of motion of a dipole in arbitrary stationary electromagnetic fields and analysis of described by them dynamics is important for the construction of electromagnetic traps for polar particles.

Identifiants

pubmed: 34493742
doi: 10.1038/s41598-021-96913-4
pii: 10.1038/s41598-021-96913-4
pmc: PMC8423829
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

17756

Subventions

Organisme : Ministerstwo Nauki i Szkolnictwa Wyższego
ID : 003/RID/2018/19

Informations de copyright

© 2021. The Author(s).

Références

Chaos. 2015 May;25(5):053102
pubmed: 26026314
Chaos. 2016 Aug;26(8):083118
pubmed: 27586614
Proc Math Phys Eng Sci. 2019 Sep;475(2229):20190230
pubmed: 31611718

Auteurs

Maria Przybylska (M)

Institute of Physics, University of Zielona Góra, Licealna 9, 65-417, Zielona Góra, Poland. m.przybylska@if.uz.zgora.pl.

Andrzej J Maciejewski (AJ)

Janusz Gil Institute of Astronomy, University of Zielona Góra, ul. Licealna 9, 65-417, Zielona Góra, Poland.

Classifications MeSH