The Role of Common Alcoholic Sacrificial Agents in Photocatalysis: Is It Always Trivial?

acetone hydrogen evolution reaction radicals reaction mechanism sacrificial agents

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
17 Nov 2021
Historique:
received: 19 08 2021
pubmed: 9 9 2021
medline: 9 9 2021
entrez: 8 9 2021
Statut: ppublish

Résumé

Photocatalytic hydrogen production is proposed as a sustainable energy source. Simultaneous reduction and oxidation of water is a complex multistep reaction with high overpotential. Photocatalytic processes involving semiconductors transfer electrons from the valence band to the conduction band. Sacrificial substrates that react with the photochemically formed holes in the valence band are often used to study the mechanism of H

Identifiants

pubmed: 34494701
doi: 10.1002/chem.202103040
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

15936-15943

Subventions

Organisme : PAZY Foundation
ID : ID126-2020

Informations de copyright

© 2021 Wiley-VCH GmbH.

Références

Q. Wang, K. Domen, Chem. Rev. 2020, 120, 919-985.
C. Gomes Silva, R. Juárez, T. Marino, R. Molinari, H. García, J. Am. Chem. Soc. 2011, 133, 595-602.
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919-9986.
V. Kumaravel, S. Mathew, J. Bartlett, S. C. Pillai, Appl. Catal. B 2019, 244, 1021-1064.
T. Montini, V. Gombac, L. Sordelli, J. J. Delgado, X. Chen, G. Adami, P. Fornasiero, ChemCatChem 2011, 3, 574-577.
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 2012, 24, 229-251.
A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735-758.
C. R. López, E. P. Melián, J. A. Ortega Méndez, D. E. Santiago, J. M. Doña Rodríguez, O. González Díaz, J. Photochem. Photobiol. A 2015, 312, 45-54.
B. Banerjee, V. Amoli, A. Maurya, A. K. Sinha, A. Bhaumik, Nanoscale 2015, 7, 10504-10512.
Y. Choi, H. Kim, G. Moon, S. Jo, W. Choi, ACS Catal. 2016, 6, 821-828.
M. J. Nalbandian, K. E. Greenstein, D. Shuai, M. Zhang, Y.-H. Choa, G. F. Parkin, N. V. Myung, D. M. Cwiertny, Environ. Sci. Technol. 2015, 49, 1654-1663.
M. McEntee, A. Stevanovic, W. Tang, M. Neurock, J. T. Yates, J. Am. Chem. Soc. 2015, 137, 1972-1982.
D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 2012, 134, 6309-6315.
Y. Wen, B. Liu, W. Zeng, Y. Wang, Nanoscale 2013, 5, 9739.
Y. Yu, W. Wen, X.-Y. Qian, J.-B. Liu, J.-M. Wu, Sci. Rep. 2017, 7, 41253.
W. Jones, D. J. Martin, A. Caravaca, A. M. Beale, M. Bowker, T. Maschmeyer, G. Hartley, A. Masters, Appl. Catal. B 2019, 240, 373-379.
L.-N. Chen, K.-P. Hou, Y.-S. Liu, Z.-Y. Qi, Q. Zheng, Y.-H. Lu, J.-Y. Chen, J.-L. Chen, C.-W. Pao, S.-B. Wang, Y.-B. Li, S.-H. Xie, F.-D. Liu, D. Prendergast, L. E. Klebanoff, V. Stavila, M. D. Allendorf, J. Guo, L.-S. Zheng, J. Su, G. A. Somorjai, J. Am. Chem. Soc. 2019, 141, 17995-17999.
A. Beltram, M. Melchionna, T. Montini, L. Nasi, P. Fornasiero, M. Prato, Green Chem. 2017, 19, 2379-2389.
N. Lakshmana Reddy, K. K. Cheralathan, V. Durga Kumari, B. Neppolian, S. Muthukonda Venkatakrishnan, ACS Sustainable Chem. Eng. 2018, 6, 3754-3764.
H. Gao, J. Zhang, R. Wang, M. Wang, Appl. Catal. B 2015, 172-173, 1-6.
Y. Lu, W.-J. Yin, K.-L. Peng, K. Wang, Q. Hu, A. Selloni, F.-R. Chen, L.-M. Liu, M.-L. Sui, Nat. Commun. 2018, 9, 2752.
B. Li, S. Wu, X. Gao, Nanotechnol. Rev. 2020, 9, 1080-1103.
G. L. Chiarello, M. V. Dozzi, E. Selli, J. Energy Chem. 2017, 26, 250-258.
P. Kalisman, Y. Nakibli, L. Amirav, Nano Lett. 2016, 16, 1776-1781.
E. Aronovitch, P. Kalisman, S. Mangel, L. Houben, L. Amirav, M. Bar-Sadan, J. Phys. Chem. Lett. 2015, 6, 3760-3764.
P. Kalisman, L. Houben, E. Aronovitch, Y. Kauffmann, M. Bar-Sadan, L. Amirav, J. Mater. Chem. A 2015, 3, 19679-19682.
Y. Nosaka, A. Nosaka, ACS Energy Lett. 2016, 1, 356-359.
K. D. Asmus, H. Moeckel, A. Henglein, J. Phys. Chem. 1973, 77, 1218-1221.
J. Schneider, D. W. Bahnemann, J. Phys. Chem. Lett. 2013, 4, 3479-3483.
H. A. Schwarz, R. W. Dodson, J. Phys. Chem. 1989, 93, 409-414.
A. G. Gash, P. F. Rodesiler, E. L. Amma, Inorg. Chem. 1974, 13, 2429-2434.
D. Meyerstein, Alkane Functionalization (Eds.: A. J. L. Pombeiro, M. de Fatima Costa Guedes da Silva), Wiley, Chichester, 2018, pp. 73-103.
R. Gao, A. Safrany, J. Rabani, Radiat. Phys. Chem. 2002, 65, 599-609.
W.-F. Wang, M. N. Schuchmann, V. Bachler, H.-P. Schuchmann, C. von Sonntag, J. Phys. Chem. 1996, 100, 15843-15847.
D. Jore, B. Champion, N. Kaouadji, J.-P. Jay-Gerin, C. Ferradini, Int. J. Radiat. Appl. Instrum. Part A 1988, 32, 443-448.
S. P. Mezyk, K. P. Madden, J. Phys. Chem. A 1999, 103, 235-242.
V. S. Kosobutskii, High Energy Chem. 2015, 49, 294-296.
G. S. Rolly, D. Meyerstein, G. Yardeni, R. Bar-Ziv, T. Zidki, Phys. Chem. Chem. Phys. 2020, 22, 6401-6405.
L. Amirav, A. P. Alivisatos, J. Am. Chem. Soc. 2013, 135, 13049-13053.
Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, J. Am. Chem. Soc. 2006, 128, 416-417.
N. Denisov, J. Yoo, P. Schmuki, Electrochim. Acta. 2019, 319, 61-71.
W.-T. Chen, A. Chan, Z. H. N. Al-Azri, A. G. Dosado, M. A. Nadeem, D. Sun-Waterhouse, H. Idriss, G. I. N. Waterhouse, J. Catal. 2015, 329, 499-513.
K. Wu, T. Lian, Chem. Soc. Rev. 2016, 45, 3781-3810.
T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013-1018.
L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, T. Khalyavka, J. Solid State Chem. 2013, 198, 511-519.
Y. Cao, P. Zhou, Y. Tu, Z. Liu, B.-W. Dong, A. Azad, D. Ma, D. Wang, X. Zhang, Y. Yang, S.-D. Jiang, R. Zhu, S. Guo, F. Mo, W. Ma, iScience 2019, 20, 195-204.
A. Chanda, K. Rout, M. Vasundhara, S. R. Joshi, J. Singh, RSC Adv. 2018, 8, 10939-10947.
V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943-4950.
K. Sathiyan, R. Bar-Ziv, O. Mendelson, T. Zidki, Mater. Res. Bull. 2020, 126, 110842.
H. Zhao, P. Liu, X. Wu, A. Wang, D. Zheng, S. Wang, Z. Chen, S. Larter, Y. Li, B.-L. Su, M. G. Kibria, J. Hu, Appl. Catal. B 2021, 291, 120055.
K. Yang, C. Meng, L. Lin, X. Peng, X. Chen, X. Wang, W. Dai, X. Fu, Catal. Sci. Technol. 2016, 6, 829-839.
L. Yu, Y. Shao, D. Li, Appl. Catal. B 2017, 204, 216-223.
D. P. Anderson, J. F. Alvino, A. Gentleman, H. Al Qahtani, L. Thomsen, M. I. J. Polson, G. F. Metha, V. B. Golovko, G. G. Andersson, Phys. Chem. Chem. Phys. 2013, 15, 3917.
C. Ampelli, R. Passalacqua, C. Genovese, S. Perathoner, G. Centi, T. Montini, V. Gombac, J. J. Delgado Jaen, P. Fornasiero, RSC Adv. 2013, 3, 21776.
Z. Kasarevic-Popovic, D. Behar, J. Rabani, J. Phys. Chem. B 2004, 108, 20291-20295.
D. Behar, J. Rabani, J. Phys. Chem. B 2006, 110, 8750-8755.
T. Zidki, H. Cohen, D. Meyerstein, Phys. Chem. Chem. Phys. 2006, 8, 3552-3556.
T. Zidki, R. Bar-Ziv, U. Green, H. Cohen, D. Meisel, D. Meyerstein, Phys. Chem. Chem. Phys. 2014, 16, 15422-15429.
J. Zhao, R. Shi, Z. Li, C. Zhou, T. Zhang, Nano Select. 2020, 1, 12-29.
M. Rivlin, U. Eliav, G. Navon, J. Phys. Chem. B 2015, 119, 4479-4487.
C. C. Lai, G. R. Freeman, J. Phys. Chem. 1990, 94, 302-308.
S. Gordon, E. J. Hart, M. S. Matheson, J. Rabani, J. K. Thomas, Discuss. Faraday Soc. 1963, 36, 193.
B. S. Wolfenden, R. L. Willson, J. Chem. Soc. Perkin Trans. 2 1982, 805-812.
A. Sermiagin, D. Meyerstein, R. Bar-Ziv, T. Zidki, Angew. Chem. Int. Ed. 2018, 57, 16525-16528;
Angew. Chem. 2018, 130, 16763-16766.
S. Nehari, J. Rabani, J. Phys. Chem. 1963, 67, 1609-1613.
P. Neta, J. Grodkowski, A. B. Ross, J. Phys. Chem. Ref. Data. 1996, 25, 709-1050.
M. Chin, P. H. Wine, Aquatic and Surface Photochemistry (Eds.: G. R. Helz, R. G. Zepp, D. G. Crosby), CRC Press, Boca Raton, 1994, pp. 85-96.
Y. Y. Birdja, M. T. M. Koper, J. Am. Chem. Soc. 2017, 139, 2030-2034.
H. S. Fry, J. J. Uber, J. W. Price, Recl. Trav. Chim. Pays-Bas 2010, 50, 1060-1065.
G. Greco, K. A. Mazzio, X. Dou, E. Gericke, R. Wendt, M. Krumrey, S. Passerini, ACS Appl. Energ. Mater. 2019, 2, 7142-7151.

Auteurs

Krishnamoorthy Sathiyan (K)

Department of Chemical Sciences, Ariel University, Centers for Radical Reactions and Material Research and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Kyriat Hamada 3, Ariel, 40700, Israel.

Ronen Bar-Ziv (R)

Department of Chemistry, Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva, 84190, Israel.

Vered Marks (V)

Department of Chemical Sciences, Ariel University, Centers for Radical Reactions and Material Research and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Kyriat Hamada 3, Ariel, 40700, Israel.

Dan Meyerstein (D)

Department of Chemical Sciences, Ariel University, Centers for Radical Reactions and Material Research and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Kyriat Hamada 3, Ariel, 40700, Israel.
Department of Chemistry, Ben-Gurion University, 84105, Beer-Sheva, Israel.

Tomer Zidki (T)

Department of Chemical Sciences, Ariel University, Centers for Radical Reactions and Material Research and the Schlesinger Family Center for Compact Accelerators, Radiation Sources and Applications, Kyriat Hamada 3, Ariel, 40700, Israel.

Classifications MeSH