The Role of Common Alcoholic Sacrificial Agents in Photocatalysis: Is It Always Trivial?
acetone
hydrogen evolution reaction
radicals
reaction mechanism
sacrificial agents
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
17 Nov 2021
17 Nov 2021
Historique:
received:
19
08
2021
pubmed:
9
9
2021
medline:
9
9
2021
entrez:
8
9
2021
Statut:
ppublish
Résumé
Photocatalytic hydrogen production is proposed as a sustainable energy source. Simultaneous reduction and oxidation of water is a complex multistep reaction with high overpotential. Photocatalytic processes involving semiconductors transfer electrons from the valence band to the conduction band. Sacrificial substrates that react with the photochemically formed holes in the valence band are often used to study the mechanism of H
Identifiants
pubmed: 34494701
doi: 10.1002/chem.202103040
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
15936-15943Subventions
Organisme : PAZY Foundation
ID : ID126-2020
Informations de copyright
© 2021 Wiley-VCH GmbH.
Références
Q. Wang, K. Domen, Chem. Rev. 2020, 120, 919-985.
C. Gomes Silva, R. Juárez, T. Marino, R. Molinari, H. García, J. Am. Chem. Soc. 2011, 133, 595-602.
J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919-9986.
V. Kumaravel, S. Mathew, J. Bartlett, S. C. Pillai, Appl. Catal. B 2019, 244, 1021-1064.
T. Montini, V. Gombac, L. Sordelli, J. J. Delgado, X. Chen, G. Adami, P. Fornasiero, ChemCatChem 2011, 3, 574-577.
H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 2012, 24, 229-251.
A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev. 1995, 95, 735-758.
C. R. López, E. P. Melián, J. A. Ortega Méndez, D. E. Santiago, J. M. Doña Rodríguez, O. González Díaz, J. Photochem. Photobiol. A 2015, 312, 45-54.
B. Banerjee, V. Amoli, A. Maurya, A. K. Sinha, A. Bhaumik, Nanoscale 2015, 7, 10504-10512.
Y. Choi, H. Kim, G. Moon, S. Jo, W. Choi, ACS Catal. 2016, 6, 821-828.
M. J. Nalbandian, K. E. Greenstein, D. Shuai, M. Zhang, Y.-H. Choa, G. F. Parkin, N. V. Myung, D. M. Cwiertny, Environ. Sci. Technol. 2015, 49, 1654-1663.
M. McEntee, A. Stevanovic, W. Tang, M. Neurock, J. T. Yates, J. Am. Chem. Soc. 2015, 137, 1972-1982.
D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 2012, 134, 6309-6315.
Y. Wen, B. Liu, W. Zeng, Y. Wang, Nanoscale 2013, 5, 9739.
Y. Yu, W. Wen, X.-Y. Qian, J.-B. Liu, J.-M. Wu, Sci. Rep. 2017, 7, 41253.
W. Jones, D. J. Martin, A. Caravaca, A. M. Beale, M. Bowker, T. Maschmeyer, G. Hartley, A. Masters, Appl. Catal. B 2019, 240, 373-379.
L.-N. Chen, K.-P. Hou, Y.-S. Liu, Z.-Y. Qi, Q. Zheng, Y.-H. Lu, J.-Y. Chen, J.-L. Chen, C.-W. Pao, S.-B. Wang, Y.-B. Li, S.-H. Xie, F.-D. Liu, D. Prendergast, L. E. Klebanoff, V. Stavila, M. D. Allendorf, J. Guo, L.-S. Zheng, J. Su, G. A. Somorjai, J. Am. Chem. Soc. 2019, 141, 17995-17999.
A. Beltram, M. Melchionna, T. Montini, L. Nasi, P. Fornasiero, M. Prato, Green Chem. 2017, 19, 2379-2389.
N. Lakshmana Reddy, K. K. Cheralathan, V. Durga Kumari, B. Neppolian, S. Muthukonda Venkatakrishnan, ACS Sustainable Chem. Eng. 2018, 6, 3754-3764.
H. Gao, J. Zhang, R. Wang, M. Wang, Appl. Catal. B 2015, 172-173, 1-6.
Y. Lu, W.-J. Yin, K.-L. Peng, K. Wang, Q. Hu, A. Selloni, F.-R. Chen, L.-M. Liu, M.-L. Sui, Nat. Commun. 2018, 9, 2752.
B. Li, S. Wu, X. Gao, Nanotechnol. Rev. 2020, 9, 1080-1103.
G. L. Chiarello, M. V. Dozzi, E. Selli, J. Energy Chem. 2017, 26, 250-258.
P. Kalisman, Y. Nakibli, L. Amirav, Nano Lett. 2016, 16, 1776-1781.
E. Aronovitch, P. Kalisman, S. Mangel, L. Houben, L. Amirav, M. Bar-Sadan, J. Phys. Chem. Lett. 2015, 6, 3760-3764.
P. Kalisman, L. Houben, E. Aronovitch, Y. Kauffmann, M. Bar-Sadan, L. Amirav, J. Mater. Chem. A 2015, 3, 19679-19682.
Y. Nosaka, A. Nosaka, ACS Energy Lett. 2016, 1, 356-359.
K. D. Asmus, H. Moeckel, A. Henglein, J. Phys. Chem. 1973, 77, 1218-1221.
J. Schneider, D. W. Bahnemann, J. Phys. Chem. Lett. 2013, 4, 3479-3483.
H. A. Schwarz, R. W. Dodson, J. Phys. Chem. 1989, 93, 409-414.
A. G. Gash, P. F. Rodesiler, E. L. Amma, Inorg. Chem. 1974, 13, 2429-2434.
D. Meyerstein, Alkane Functionalization (Eds.: A. J. L. Pombeiro, M. de Fatima Costa Guedes da Silva), Wiley, Chichester, 2018, pp. 73-103.
R. Gao, A. Safrany, J. Rabani, Radiat. Phys. Chem. 2002, 65, 599-609.
W.-F. Wang, M. N. Schuchmann, V. Bachler, H.-P. Schuchmann, C. von Sonntag, J. Phys. Chem. 1996, 100, 15843-15847.
D. Jore, B. Champion, N. Kaouadji, J.-P. Jay-Gerin, C. Ferradini, Int. J. Radiat. Appl. Instrum. Part A 1988, 32, 443-448.
S. P. Mezyk, K. P. Madden, J. Phys. Chem. A 1999, 103, 235-242.
V. S. Kosobutskii, High Energy Chem. 2015, 49, 294-296.
G. S. Rolly, D. Meyerstein, G. Yardeni, R. Bar-Ziv, T. Zidki, Phys. Chem. Chem. Phys. 2020, 22, 6401-6405.
L. Amirav, A. P. Alivisatos, J. Am. Chem. Soc. 2013, 135, 13049-13053.
Y. Tamaki, A. Furube, M. Murai, K. Hara, R. Katoh, M. Tachiya, J. Am. Chem. Soc. 2006, 128, 416-417.
N. Denisov, J. Yoo, P. Schmuki, Electrochim. Acta. 2019, 319, 61-71.
W.-T. Chen, A. Chan, Z. H. N. Al-Azri, A. G. Dosado, M. A. Nadeem, D. Sun-Waterhouse, H. Idriss, G. I. N. Waterhouse, J. Catal. 2015, 329, 499-513.
K. Wu, T. Lian, Chem. Soc. Rev. 2016, 45, 3781-3810.
T. Simon, N. Bouchonville, M. J. Berr, A. Vaneski, A. Adrović, D. Volbers, R. Wyrwich, M. Döblinger, A. S. Susha, A. L. Rogach, F. Jäckel, J. K. Stolarczyk, J. Feldmann, Nat. Mater. 2014, 13, 1013-1018.
L. Kernazhitsky, V. Shymanovska, T. Gavrilko, V. Naumov, V. Kshnyakin, T. Khalyavka, J. Solid State Chem. 2013, 198, 511-519.
Y. Cao, P. Zhou, Y. Tu, Z. Liu, B.-W. Dong, A. Azad, D. Ma, D. Wang, X. Zhang, Y. Yang, S.-D. Jiang, R. Zhu, S. Guo, F. Mo, W. Ma, iScience 2019, 20, 195-204.
A. Chanda, K. Rout, M. Vasundhara, S. R. Joshi, J. Singh, RSC Adv. 2018, 8, 10939-10947.
V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc. 2004, 126, 4943-4950.
K. Sathiyan, R. Bar-Ziv, O. Mendelson, T. Zidki, Mater. Res. Bull. 2020, 126, 110842.
H. Zhao, P. Liu, X. Wu, A. Wang, D. Zheng, S. Wang, Z. Chen, S. Larter, Y. Li, B.-L. Su, M. G. Kibria, J. Hu, Appl. Catal. B 2021, 291, 120055.
K. Yang, C. Meng, L. Lin, X. Peng, X. Chen, X. Wang, W. Dai, X. Fu, Catal. Sci. Technol. 2016, 6, 829-839.
L. Yu, Y. Shao, D. Li, Appl. Catal. B 2017, 204, 216-223.
D. P. Anderson, J. F. Alvino, A. Gentleman, H. Al Qahtani, L. Thomsen, M. I. J. Polson, G. F. Metha, V. B. Golovko, G. G. Andersson, Phys. Chem. Chem. Phys. 2013, 15, 3917.
C. Ampelli, R. Passalacqua, C. Genovese, S. Perathoner, G. Centi, T. Montini, V. Gombac, J. J. Delgado Jaen, P. Fornasiero, RSC Adv. 2013, 3, 21776.
Z. Kasarevic-Popovic, D. Behar, J. Rabani, J. Phys. Chem. B 2004, 108, 20291-20295.
D. Behar, J. Rabani, J. Phys. Chem. B 2006, 110, 8750-8755.
T. Zidki, H. Cohen, D. Meyerstein, Phys. Chem. Chem. Phys. 2006, 8, 3552-3556.
T. Zidki, R. Bar-Ziv, U. Green, H. Cohen, D. Meisel, D. Meyerstein, Phys. Chem. Chem. Phys. 2014, 16, 15422-15429.
J. Zhao, R. Shi, Z. Li, C. Zhou, T. Zhang, Nano Select. 2020, 1, 12-29.
M. Rivlin, U. Eliav, G. Navon, J. Phys. Chem. B 2015, 119, 4479-4487.
C. C. Lai, G. R. Freeman, J. Phys. Chem. 1990, 94, 302-308.
S. Gordon, E. J. Hart, M. S. Matheson, J. Rabani, J. K. Thomas, Discuss. Faraday Soc. 1963, 36, 193.
B. S. Wolfenden, R. L. Willson, J. Chem. Soc. Perkin Trans. 2 1982, 805-812.
A. Sermiagin, D. Meyerstein, R. Bar-Ziv, T. Zidki, Angew. Chem. Int. Ed. 2018, 57, 16525-16528;
Angew. Chem. 2018, 130, 16763-16766.
S. Nehari, J. Rabani, J. Phys. Chem. 1963, 67, 1609-1613.
P. Neta, J. Grodkowski, A. B. Ross, J. Phys. Chem. Ref. Data. 1996, 25, 709-1050.
M. Chin, P. H. Wine, Aquatic and Surface Photochemistry (Eds.: G. R. Helz, R. G. Zepp, D. G. Crosby), CRC Press, Boca Raton, 1994, pp. 85-96.
Y. Y. Birdja, M. T. M. Koper, J. Am. Chem. Soc. 2017, 139, 2030-2034.
H. S. Fry, J. J. Uber, J. W. Price, Recl. Trav. Chim. Pays-Bas 2010, 50, 1060-1065.
G. Greco, K. A. Mazzio, X. Dou, E. Gericke, R. Wendt, M. Krumrey, S. Passerini, ACS Appl. Energ. Mater. 2019, 2, 7142-7151.