The Role of Glycosylation in Infectious Diseases.
Bacteria
Glycan–lectin interaction
Glycosylation
Immune evasion
Infection
Virus
Journal
Advances in experimental medicine and biology
ISSN: 0065-2598
Titre abrégé: Adv Exp Med Biol
Pays: United States
ID NLM: 0121103
Informations de publication
Date de publication:
2021
2021
Historique:
entrez:
8
9
2021
pubmed:
9
9
2021
medline:
11
9
2021
Statut:
ppublish
Résumé
Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.
Identifiants
pubmed: 34495538
doi: 10.1007/978-3-030-70115-4_11
doi:
Substances chimiques
Lectins
0
Polysaccharides
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
219-237Informations de copyright
© 2021. The Author(s), under exclusive license to Springer Nature Switzerland AG.
Références
Akaiwa M, Yae Y, Sugimoto R, Suzuki SO, Iwaki T, Izuhara K, Hamasaki N (1999) Hakata antigen, a new member of the ficolin/opsonin p35 family, is a novel human lectin secreted into bronchus/alveolus and bile. J Histochem Cytochem 47(6):777–786. https://doi.org/10.1177/002215549904700607
doi: 10.1177/002215549904700607
pubmed: 10330454
Akiyama H, Ramirez NG, Gudheti MV, Gummuluru S (2015) CD169-mediated trafficking of HIV to plasma membrane invaginations in dendritic cells attenuates efficacy of anti-gp120 broadly neutralizing antibodies. PLoS Pathog 11(3):e1004751. https://doi.org/10.1371/journal.ppat.1004751
doi: 10.1371/journal.ppat.1004751
pubmed: 25760631
pmcid: 4356592
Alemka A, Nothaft H, Zheng J, Szymanski CM (2013) N-glycosylation of Campylobacter jejuni surface proteins promotes bacterial fitness. Infect Immun 81(5):1674–1682. https://doi.org/10.1128/iai.01370-12
doi: 10.1128/iai.01370-12
pubmed: 23460522
pmcid: 3648013
Al-Qahtani AA, Murugaiah V, Bashir HA, Pathan AA, Abozaid SM, Makarov E, Nal-Rogier B, Kishore U, Al-Ahdal MN (2019) Full-length human surfactant protein A inhibits influenza A virus infection of A549 lung epithelial cells: a recombinant form containing neck and lectin domains promotes infectivity. Immunobiology 224(3):408–418. https://doi.org/10.1016/j.imbio.2019.02.006
doi: 10.1016/j.imbio.2019.02.006
pubmed: 30954271
Alymova IV, Portner A, Mishin VP, McCullers JA, Freiden P, Taylor GL (2012) Receptor-binding specificity of the human parainfluenza virus type 1 hemagglutinin-neuraminidase glycoprotein. Glycobiology 22(2):174–180. https://doi.org/10.1093/glycob/cwr112
doi: 10.1093/glycob/cwr112
pubmed: 21846691
Amonsen M, Smith DF, Cummings RD, Air GM (2007) Human parainfluenza viruses hPIV1 and hPIV3 bind oligosaccharides with alpha2-3-linked sialic acids that are distinct from those bound by H5 avian influenza virus hemagglutinin. J Virol 81(15):8341–8345. https://doi.org/10.1128/jvi.00718-07
doi: 10.1128/jvi.00718-07
pubmed: 17522226
pmcid: 1951310
Aoyagi Y, Adderson EE, Min JG, Matsushita M, Fujita T, Takahashi S, Okuwaki Y, Bohnsack JF (2005) Role of L-ficolin/mannose-binding lectin-associated serine protease complexes in the opsonophagocytosis of type III group B streptococci. J Immunol 174(1):418–425. https://doi.org/10.4049/jimmunol.174.1.418
doi: 10.4049/jimmunol.174.1.418
pubmed: 15611266
Arnberg N, Pring-Akerblom P, Wadell G (2002) Adenovirus type 37 uses sialic acid as a cellular receptor on Chang C cells. J Virol 76(17):8834–8841. https://doi.org/10.1128/jvi.76.17.8834-8841.2002
doi: 10.1128/jvi.76.17.8834-8841.2002
pubmed: 12163603
pmcid: 136979
Cao A, Alluqmani N, Buhari FHM, Wasim L, Smith LK, Quaile AT, Shannon M, Hakim Z, Furmli H, Owen DM, Savchenko A, Treanor B (2018) Galectin-9 binds IgM-BCR to regulate B cell signaling. Nat Commun 9(1):3288. https://doi.org/10.1038/s41467-018-05771-8
doi: 10.1038/s41467-018-05771-8
pubmed: 30120235
pmcid: 6098130
Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113(14):3333–3336. https://doi.org/10.1182/blood-2008-11-187302
doi: 10.1182/blood-2008-11-187302
pubmed: 19196661
pmcid: 2665898
Chen T, Hu Y, Ding Q, Yu J, Wang F, Luo F, Zhang XL (2015) Serum ficolin-2 concentrations are significantly changed in patients with hepatitis B virus infection and liver diseases. Virol Sin 30(4):249–260. https://doi.org/10.1007/s12250-015-3605-4
doi: 10.1007/s12250-015-3605-4
pubmed: 26220728
pmcid: 8200881
Choukhi A, Ung S, Wychowski C, Dubuisson J (1998) Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol 72(5):3851–3858. https://doi.org/10.1128/jvi.72.5.3851-3858.1998
doi: 10.1128/jvi.72.5.3851-3858.1998
pubmed: 9557669
pmcid: 109609
Collar AL, Clarke EC, Anaya E, Merrill D, Yarborough S, Anthony SM, Kuhn JH, Merle C, Theisen M, Bradfute SB (2017) Comparison of N- and O-linked glycosylation patterns of ebolavirus glycoproteins. Virology 502:39–47. https://doi.org/10.1016/j.virol.2016.12.010
doi: 10.1016/j.virol.2016.12.010
pubmed: 27984785
Crocker PR, Feizi T (1996) Carbohydrate recognition systems: functional triads in cell-cell interactions. Curr Opin Struct Biol 6(5):679–691. https://doi.org/10.1016/s0959-440x(96)80036-4
doi: 10.1016/s0959-440x(96)80036-4
pubmed: 8913692
Daniels R, Kurowski B, Johnson AE, Hebert DN (2003) N-linked glycans direct the cotranslational folding pathway of influenza hemagglutinin. Mol Cell 11(1):79–90. https://doi.org/10.1016/s1097-2765(02)00821-3
doi: 10.1016/s1097-2765(02)00821-3
pubmed: 12535523
Dao DN, Kremer L, Guérardel Y, Molano A, Jacobs WR Jr, Porcelli SA, Briken V (2004) Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-12 production in macrophages. Infect Immun 72(4):2067–2074. https://doi.org/10.1128/iai.72.4.2067-2074.2004
doi: 10.1128/iai.72.4.2067-2074.2004
pubmed: 15039328
pmcid: 375177
Day CJ, Tran EN, Semchenko EA, Tram G, Hartley-Tassell LE, Ng PS, King RM, Ulanovsky R, McAtamney S, Apicella MA, Tiralongo J, Morona R, Korolik V, Jennings MP (2015) Glycan:glycan interactions: high affinity biomolecular interactions that can mediate binding of pathogenic bacteria to host cells. Proc Natl Acad Sci U S A 112(52):E7266–E7275. https://doi.org/10.1073/pnas.1421082112
doi: 10.1073/pnas.1421082112
pubmed: 26676578
pmcid: 4702957
de Graaf M, Fouchier RA (2014) Role of receptor binding specificity in influenza a virus transmission and pathogenesis. EMBO J 33(8):823–841. https://doi.org/10.1002/embj.201387442
doi: 10.1002/embj.201387442
pubmed: 24668228
pmcid: 4194109
De Oliveira DM, Hartley-Tassell L, Everest-Dass A, Day CJ, Dabbs RA, Ve T, Kobe B, Nizet V, Packer NH, Walker MJ, Jennings MP, Sanderson-Smith ML (2017) Blood group antigen recognition via the group a streptococcal M protein mediates host colonization. mBio 8(1). https://doi.org/10.1128/mBio.02237-16
de Wit E, van Doremalen N, Falzarano D, Munster VJ (2016) SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 14(8):523–534. https://doi.org/10.1038/nrmicro.2016.81
doi: 10.1038/nrmicro.2016.81
pubmed: 27344959
pmcid: 7097822
de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB (2007) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13(3):367–371. https://doi.org/10.1038/nm1541
doi: 10.1038/nm1541
pubmed: 17334373
Ding Q, Shen Y, Li D, Yang J, Yu J, Yin Z, Zhang XL (2017) Ficolin-2 triggers antitumor effect by activating macrophages and CD8(+) T cells. Clinical Immunology (Orlando, Fla) 183:145–157. https://doi.org/10.1016/j.clim.2017.08.012
doi: 10.1016/j.clim.2017.08.012
Eichler J (2019) Protein glycosylation. Current Biology : CB 29(7):R229–r231. https://doi.org/10.1016/j.cub.2019.01.003
doi: 10.1016/j.cub.2019.01.003
pubmed: 30939300
Everest-Dass AV, Jin D, Thaysen-Andersen M, Nevalainen H, Kolarich D, Packer NH (2012) Comparative structural analysis of the glycosylation of salivary and buccal cell proteins: innate protection against infection by Candida albicans. Glycobiology 22(11):1465–1479. https://doi.org/10.1093/glycob/cws112
doi: 10.1093/glycob/cws112
pubmed: 22833316
Fischer PB, Karlsson GB, Butters TD, Dwek RA, Platt FM (1996) N-butyldeoxynojirimycin-mediated inhibition of human immunodeficiency virus entry correlates with changes in antibody recognition of the V1/V2 region of gp120. J Virol 70(10):7143–7152. https://doi.org/10.1128/jvi.70.10.7143-7152.1996
doi: 10.1128/jvi.70.10.7143-7152.1996
pubmed: 8794361
pmcid: 190767
Fischetti VA (1989) Streptococcal M protein: molecular design and biological behavior. Clin Microbiol Rev 2(3):285–314. https://doi.org/10.1128/cmr.2.3.285
doi: 10.1128/cmr.2.3.285
pubmed: 2670192
pmcid: 358122
Fratti RA, Chua J, Vergne I, Deretic V (2003) Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100(9):5437–5442. https://doi.org/10.1073/pnas.0737613100
doi: 10.1073/pnas.0737613100
pubmed: 12702770
pmcid: 154363
Frederiksen PD, Thiel S, Larsen CB, Jensenius JC (2005) M-ficolin, an innate immune defence molecule, binds patterns of acetyl groups and activates complement. Scand J Immunol 62(5):462–473. https://doi.org/10.1111/j.1365-3083.2005.01685.x
doi: 10.1111/j.1365-3083.2005.01685.x
pubmed: 16305643
Frick IM, Schmidtchen A, Sjöbring U (2003) Interactions between M proteins of and glycosaminoglycans promote bacterial adhesion to host cells. Eur J Biochem 270(10):2303–2311. https://doi.org/10.1046/j.1432-1033.2003.03600.x
doi: 10.1046/j.1432-1033.2003.03600.x
pubmed: 12752450
Ganem D, Prince AM (2004) Hepatitis B virus infection – natural history and clinical consequences. N Engl J Med 350(11):1118–1129. https://doi.org/10.1056/NEJMra031087
Geijtenbeek TB, van Kooyk Y (2003) DC-SIGN: a novel HIV receptor on DCs that mediates HIV-1 transmission. Curr Top Microbiol Immunol 276:31–54. https://doi.org/10.1007/978-3-662-06508-2_2
doi: 10.1007/978-3-662-06508-2_2
pubmed: 12797442
Gilleron M, Quesniaux VF, Puzo G (2003) Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J Biol Chem 278(32):29880–29889. https://doi.org/10.1074/jbc.M303446200
doi: 10.1074/jbc.M303446200
pubmed: 12775723
Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103(29):10834–10839. https://doi.org/10.1073/pnas.0603940103
doi: 10.1073/pnas.0603940103
pubmed: 16825336
pmcid: 2047628
Goffard A, Dubuisson J (2003) Glycosylation of hepatitis C virus envelope proteins. Biochimie 85(3–4):295–301. https://doi.org/10.1016/s0300-9084(03)00004-x
doi: 10.1016/s0300-9084(03)00004-x
pubmed: 12770768
Goffard A, Callens N, Bartosch B, Wychowski C, Cosset FL, Montpellier C, Dubuisson J (2005) Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J Virol 79(13):8400–8409. https://doi.org/10.1128/jvi.79.13.8400-8409.2005
doi: 10.1128/jvi.79.13.8400-8409.2005
pubmed: 15956584
pmcid: 1143753
Goh BC, Rynkiewicz MJ, Cafarella TR, White MR, Hartshorn KL, Allen K, Crouch EC, Calin O, Seeberger PH, Schulten K, Seaton BA (2013) Molecular mechanisms of inhibition of influenza by surfactant protein D revealed by large-scale molecular dynamics simulation. Biochemistry 52(47):8527–8538. https://doi.org/10.1021/bi4010683
doi: 10.1021/bi4010683
pubmed: 24224757
Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TB (2009) Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and helicobacter pylori. Nat Immunol 10(10):1081–1088. https://doi.org/10.1038/ni.1778
doi: 10.1038/ni.1778
pubmed: 19718030
Hamasur B, Haile M, Pawlowski A, Schroder U, Kallenius G, Svenson SB (2004) A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab) fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin Exp Immunol 138(1):30–38. https://doi.org/10.1111/j.1365-2249.2004.02593.x
doi: 10.1111/j.1365-2249.2004.02593.x
pubmed: 15373902
pmcid: 1809178
Hart ML, Saifuddin M, Uemura K, Bremer EG, Hooker B, Kawasaki T, Spear GT (2002) High mannose glycans and sialic acid on gp120 regulate binding of mannose-binding lectin (MBL) to HIV type 1. AIDS Res Hum Retrovir 18(17):1311–1317. https://doi.org/10.1089/088922202320886352
doi: 10.1089/088922202320886352
pubmed: 12487819
Haselhorst T, Fleming FE, Dyason JC, Hartnell RD, Yu X, Holloway G, Santegoets K, Kiefel MJ, Blanchard H, Coulson BS, von Itzstein M (2009) Sialic acid dependence in rotavirus host cell invasion. Nat Chem Biol 5(2):91–93. https://doi.org/10.1038/nchembio.134
doi: 10.1038/nchembio.134
pubmed: 19109595
Helle F, Dubuisson J (2008) Hepatitis C virus entry into host cells. Cellular and Molecular Life Sciences : CMLS 65(1):100–112. https://doi.org/10.1007/s00018-007-7291-8
doi: 10.1007/s00018-007-7291-8
pubmed: 17914604
Helle F, Vieyres G, Elkrief L, Popescu CI, Wychowski C, Descamps V, Castelain S, Roingeard P, Duverlie G, Dubuisson J (2010) Role of N-linked glycans in the functions of hepatitis C virus envelope proteins incorporated into infectious virions. J Virol 84(22):11905–11915. https://doi.org/10.1128/jvi.01548-10
doi: 10.1128/jvi.01548-10
pubmed: 20844034
pmcid: 2977866
Heß R, Storcksdieck Genannt Bonsmann M, Lapuente D, Maaske A, Kirschning C, Ruland J, Lepenies B, Hannaman D, Tenbusch M, Überla K (2019) Glycosylation of HIV Env impacts IgG subtype responses to vaccination. Viruses 11(2). https://doi.org/10.3390/v11020153
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S (2020) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181(2):271–280.e278. https://doi.org/10.1016/j.cell.2020.02.052
doi: 10.1016/j.cell.2020.02.052
pubmed: 32142651
pmcid: 7102627
Huang X, Dong W, Milewska A, Golda A, Qi Y, Zhu QK, Marasco WA, Baric RS, Sims AC, Pyrc K, Li W, Sui J (2015) Human coronavirus HKU1 spike protein uses O-acetylated sialic acid as an attachment receptor determinant and employs hemagglutinin-esterase protein as a receptor-destroying enzyme. J Virol 89(14):7202–7213. https://doi.org/10.1128/jvi.00854-15
doi: 10.1128/jvi.00854-15
pubmed: 25926653
pmcid: 4473545
Ilver D, Arnqvist A, Ogren J, Frick IM, Kersulyte D, Incecik ET, Berg DE, Covacci A, Engstrand L, Borén T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science (NY) 279(5349):373–377. https://doi.org/10.1126/science.279.5349.373
doi: 10.1126/science.279.5349.373
Ito K, Qin Y, Guarnieri M, Garcia T, Kwei K, Mizokami M, Zhang J, Li J, Wands JR, Tong S (2010) Impairment of hepatitis B virus virion secretion by single-amino-acid substitutions in the small envelope protein and rescue by a novel glycosylation site. J Virol 84(24):12850–12861. https://doi.org/10.1128/jvi.01499-10
doi: 10.1128/jvi.01499-10
pubmed: 20881037
pmcid: 3004315
Janssen R, Krogfelt KA, Cawthraw SA, van Pelt W, Wagenaar JA, Owen RJ (2008) Host-pathogen interactions in Campylobacter infections: the host perspective. Clin Microbiol Rev 21(3):505–518. https://doi.org/10.1128/cmr.00055-07
doi: 10.1128/cmr.00055-07
pubmed: 18625685
pmcid: 2493085
Jennings MP, Virji M, Evans D, Foster V, Srikhanta YN, Steeghs L, van der Ley P, Moxon ER (1998) Identification of a novel gene involved in pilin glycosylation in Neisseria meningitidis. Mol Microbiol 29(4):975–984. https://doi.org/10.1046/j.1365-2958.1998.00962.x
doi: 10.1046/j.1365-2958.1998.00962.x
pubmed: 9767566
Kang PB, Azad AK, Torrelles JB, Kaufman TM, Beharka A, Tibesar E, DesJardin LE, Schlesinger LS (2005) The human macrophage mannose receptor directs Mycobacterium tuberculosis lipoarabinomannan-mediated phagosome biogenesis. J Exp Med 202(7):987–999. https://doi.org/10.1084/jem.20051239
doi: 10.1084/jem.20051239
pubmed: 16203868
pmcid: 2213176
Karakousis PC, Bishai WR, Dorman SE (2004) Mycobacterium tuberculosis cell envelope lipids and the host immune response. Cell Microbiol 6(2):105–116. https://doi.org/10.1046/j.1462-5822.2003.00351.x
doi: 10.1046/j.1462-5822.2003.00351.x
pubmed: 14706097
Kilpatrick DC, Chalmers JD, MacDonald SL, Murray M, Mohammed A, Hart SP, Matsushita M, Hill A (2009) Stable bronchiectasis is associated with low serum L-ficolin concentrations. Clin Respir J 3(1):29–33. https://doi.org/10.1111/j.1752-699X.2008.00105.x
doi: 10.1111/j.1752-699X.2008.00105.x
pubmed: 20298369
Kim JI, Lee I, Park S, Hwang MW, Bae JY, Lee S, Heo J, Park MS, García-Sastre A, Park MS (2013) Genetic requirement for hemagglutinin glycosylation and its implications for influenza a H1N1 virus evolution. J Virol 87(13):7539–7549. https://doi.org/10.1128/jvi.00373-13
doi: 10.1128/jvi.00373-13
pubmed: 23637398
pmcid: 3700310
Kim DS, Son KY, Koo KM, Kim JY, Alfajaro MM, Park JG, Hosmillo M, Soliman M, Baek YB, Cho EH, Lee JH, Kang MI, Goodfellow I, Cho KO (2016) Porcine sapelovirus uses α2,3-linked sialic acid on GD1a ganglioside as a receptor. J Virol 90(8):4067–4077. https://doi.org/10.1128/jvi.02449-15
doi: 10.1128/jvi.02449-15
pubmed: 26865725
pmcid: 4810533
Kumar R, Tuen M, Li H, Tse DB, Hioe CE (2011) Improving immunogenicity of HIV-1 envelope gp120 by glycan removal and immune complex formation. Vaccine 29(48):9064–9074. https://doi.org/10.1016/j.vaccine.2011.09.057
doi: 10.1016/j.vaccine.2011.09.057
pubmed: 21945958
pmcid: 3328143
Langereis MA, Bakkers MJ, Deng L, Padler-Karavani V, Vervoort SJ, Hulswit RJ, van Vliet AL, Gerwig GJ, de Poot SA, Boot W, van Ederen AM, Heesters BA, van der Loos CM, van Kuppeveld FJ, Yu H, Huizinga EG, Chen X, Varki A, Kamerling JP, de Groot RJ (2015) Complexity and diversity of the mammalian sialome revealed by nidovirus virolectins. Cell Rep 11(12):1966–1978. https://doi.org/10.1016/j.celrep.2015.05.044
doi: 10.1016/j.celrep.2015.05.044
pubmed: 26095364
pmcid: 5292239
Lau SK, Woo PC, Li KS, Huang Y, Tsoi HW, Wong BH, Wong SS, Leung SY, Chan KH, Yuen KY (2005) Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A 102(39):14040–14045. https://doi.org/10.1073/pnas.0506735102
doi: 10.1073/pnas.0506735102
pubmed: 16169905
pmcid: 1236580
Lavie M, Hanoulle X, Dubuisson J (2018) Glycan shielding and modulation of hepatitis C virus neutralizing antibodies. Front Immunol 9:910. https://doi.org/10.3389/fimmu.2018.00910
doi: 10.3389/fimmu.2018.00910
pubmed: 29755477
pmcid: 5934428
Lawn SD (2012) Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infect Dis 12:103. https://doi.org/10.1186/1471-2334-12-103
doi: 10.1186/1471-2334-12-103
pubmed: 22536883
pmcid: 3423001
Lenman A, Liaci AM, Liu Y, Frängsmyr L, Frank M, Blaum BS, Chai W, Podgorski II, Harrach B, Benkő M, Feizi T, Stehle T, Arnberg N (2018) Polysialic acid is a cellular receptor for human adenovirus 52. Proc Natl Acad Sci U S A 115(18):E4264–e4273. https://doi.org/10.1073/pnas.1716900115
doi: 10.1073/pnas.1716900115
pubmed: 29674446
pmcid: 5939068
Li P, Wan Q, Feng Y, Liu M, Wu J, Chen X, Zhang XL (2007) Engineering of N-glycosylation of hepatitis C virus envelope protein E2 enhances T cell responses for DNA immunization. Vaccine 25(8):1544–1551. https://doi.org/10.1016/j.vaccine.2006.09.091
doi: 10.1016/j.vaccine.2006.09.091
pubmed: 17055129
Li H, Chien PC Jr, Tuen M, Visciano ML, Cohen S, Blais S, Xu CF, Zhang HT, Hioe CE (2008) Identification of an N-linked glycosylation in the C4 region of HIV-1 envelope gp120 that is critical for recognition of neighboring CD4 T cell epitopes. J Immunol 180(6):4011–4021. https://doi.org/10.4049/jimmunol.180.6.4011
doi: 10.4049/jimmunol.180.6.4011
pubmed: 18322210
Li W, Hulswit RJG, Widjaja I, Raj VS, McBride R, Peng W, Widagdo W, Tortorici MA, van Dieren B, Lang Y, van Lent JWM, Paulson JC, de Haan CAM, de Groot RJ, van Kuppeveld FJM, Haagmans BL, Bosch BJ (2017) Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proc Natl Acad Sci U S A 114(40):E8508–e8517. https://doi.org/10.1073/pnas.1712592114
doi: 10.1073/pnas.1712592114
pubmed: 28923942
pmcid: 5635925
Li S, Liu XY, Pan Q, Wu J, Liu ZH, Wang Y, Liu M, Zhang XL (2019) Hepatitis C virus-induced FUT8 causes 5-FU drug resistance in human hepatoma Huh7.5.1 cells. Viruses 11(4). https://doi.org/10.3390/v11040378
Liu Y, Endo Y, Iwaki D, Nakata M, Matsushita M, Wada I, Inoue K, Munakata M, Fujita T (2005) Human M-ficolin is a secretory protein that activates the lectin complement pathway. J Immunol 175(5):3150–3156. https://doi.org/10.4049/jimmunol.175.5.3150
doi: 10.4049/jimmunol.175.5.3150
pubmed: 16116205
Liu M, Chen H, Luo F, Li P, Pan Q, Xia B, Qi Z, Ho WZ, Zhang XL (2007) Deletion of N-glycosylation sites of hepatitis C virus envelope protein E1 enhances specific cellular and humoral immune responses. Vaccine 25(36):6572–6580. https://doi.org/10.1016/j.vaccine.2007.07.003
doi: 10.1016/j.vaccine.2007.07.003
pubmed: 17675185
Liu J, Ali MA, Shi Y, Zhao Y, Luo F, Yu J, Xiang T, Tang J, Li D, Hu Q, Ho W, Zhang X (2009) Specifically binding of L-ficolin to N-glycans of HCV envelope glycoproteins E1 and E2 leads to complement activation. Cell Mol Immunol 6(4):235–244. https://doi.org/10.1038/cmi.2009.32
doi: 10.1038/cmi.2009.32
pubmed: 19728924
pmcid: 4002714
Liu P, Ren S, Xie Y, Liu C, Qin W, Zhou Y, Zhang M, Yang Q, Chen XC, Liu T, Yao Q, Xiao Z, Gu J, Zhang XL (2020) Quantitative analysis of serum-based IgG agalactosylation for tuberculosis auxiliary diagnosis. Glycobiology 30(9):746–759. https://doi.org/10.1093/glycob/cwaa021
doi: 10.1093/glycob/cwaa021
pubmed: 32149341
Losman B, Bolmstedt A, Schønning K, Björndal A, Westin C, Fenyö EM, Olofsson S (2001) Protection of neutralization epitopes in the V3 loop of oligomeric human immunodeficiency virus type 1 glycoprotein 120 by N-linked oligosaccharides in the V1 region. AIDS Res Hum Retrovir 17(11):1067–1076. https://doi.org/10.1089/088922201300343753
doi: 10.1089/088922201300343753
pubmed: 11485624
Lu X, Mehta A, Dwek R, Butters T, Block T (1995) Evidence that N-linked glycosylation is necessary for hepatitis B virus secretion. Virology 213(2):660–665. https://doi.org/10.1006/viro.1995.0038
doi: 10.1006/viro.1995.0038
pubmed: 7491790
Luo F, Sun X, Wang Y, Wang Q, Wu Y, Pan Q, Fang C, Zhang XL (2013) Ficolin-2 defends against virulent Mycobacteria tuberculosis infection in vivo, and its insufficiency is associated with infection in humans. PLoS One 8(9):e73859. https://doi.org/10.1371/journal.pone.0073859
doi: 10.1371/journal.pone.0073859
pubmed: 24040095
pmcid: 3767610
Luo F, Chen T, Liu J, Shen X, Zhao Y, Yang R, Zhang X (2016) Ficolin-2 binds to HIV-1 gp120 and blocks viral infection. Virol Sin 31(5):406–414. https://doi.org/10.1007/s12250-016-3808-3
doi: 10.1007/s12250-016-3808-3
pubmed: 27576476
pmcid: 8193375
Lynch NJ, Roscher S, Hartung T, Morath S, Matsushita M, Maennel DN, Kuraya M, Fujita T, Schwaeble WJ (2004) L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J Immunol 172(2):1198–1202. https://doi.org/10.4049/jimmunol.172.2.1198
doi: 10.4049/jimmunol.172.2.1198
pubmed: 14707097
Maamary PG, Ben Zakour NL, Cole JN, Hollands A, Aziz RK, Barnett TC, Cork AJ, Henningham A, Sanderson-Smith M, McArthur JD, Venturini C, Gillen CM, Kirk JK, Johnson DR, Taylor WL, Kaplan EL, Kotb M, Nizet V, Beatson SA, Walker MJ (2012) Tracing the evolutionary history of the pandemic group a streptococcal M1T1 clone. FASEB J 26(11):4675–4684. https://doi.org/10.1096/fj.12-212142
doi: 10.1096/fj.12-212142
pubmed: 22878963
pmcid: 3475248
Magalhães A, Marcos-Pinto R, Nairn AV, Dela Rosa M, Ferreira RM, Junqueira-Neto S, Freitas D, Gomes J, Oliveira P, Santos MR, Marcos NT, Xiaogang W, Figueiredo C, Oliveira C, Dinis-Ribeiro M, Carneiro F, Moremen KW, David L, Reis CA (2015) Helicobacter pylori chronic infection and mucosal inflammation switches the human gastric glycosylation pathways. Biochim Biophys Acta 1852(9):1928–1939. https://doi.org/10.1016/j.bbadis.2015.07.001
doi: 10.1016/j.bbadis.2015.07.001
pubmed: 26144047
pmcid: 4638172
Maginnis MS, Nelson CD, Atwood WJ (2015) JC polyomavirus attachment, entry, and trafficking: unlocking the keys to a fatal infection. J Neurovirol 21(6):601–613. https://doi.org/10.1007/s13365-014-0272-4
doi: 10.1007/s13365-014-0272-4
pubmed: 25078361
Mahon RN, Sande OJ, Rojas RE, Levine AD, Harding CV, Boom WH (2012) Mycobacterium tuberculosis ManLAM inhibits T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation. Cell Immunol 275(1–2):98–105. https://doi.org/10.1016/j.cellimm.2012.02.009
doi: 10.1016/j.cellimm.2012.02.009
pubmed: 22507872
pmcid: 3352599
Mathys L, François KO, Quandte M, Braakman I, Balzarini J (2014) Deletion of the highly conserved N-glycan at Asn260 of HIV-1 gp120 affects folding and lysosomal degradation of gp120, and results in loss of viral infectivity. PLoS One 9(6):e101181. https://doi.org/10.1371/journal.pone.0101181
doi: 10.1371/journal.pone.0101181
pubmed: 24967714
pmcid: 4072736
Min YQ, Duan XC, Zhou YD, Kulinich A, Meng W, Cai ZP, Ma HY, Liu L, Zhang XL, Voglmeir J (2017) Effects of microvirin monomers and oligomers on hepatitis C virus. Biosci Rep 37(3). https://doi.org/10.1042/bsr20170015
Moore JS, Wu X, Kulhavy R, Tomana M, Novak J, Moldoveanu Z, Brown R, Goepfert PA, Mestecky J (2005) Increased levels of galactose-deficient IgG in sera of HIV-1-infected individuals. AIDS (London, England) 19(4):381–389. https://doi.org/10.1097/01.aids.0000161767.21405.68
doi: 10.1097/01.aids.0000161767.21405.68
Mubaiwa TD, Hartley-Tassell LE, Semchenko EA, Jen FE, Srikhanta YN, Day CJ, Jennings MP, Seib KL (2017) The glycointeractome of serogroup B Neisseria meningitidis strain MC58. Sci Rep 7(1):5693. https://doi.org/10.1038/s41598-017-05894-w
doi: 10.1038/s41598-017-05894-w
pubmed: 28720847
pmcid: 5515891
Munkley J (2017) Glycosylation is a global target for androgen control in prostate cancer cells. Endocr Relat Cancer 24(3):R49–r64. https://doi.org/10.1530/erc-16-0569
doi: 10.1530/erc-16-0569
pubmed: 28159857
O’Hara SD, Stehle T, Garcea R (2014) Glycan receptors of the polyomaviridae: structure, function, and pathogenesis. Curr Opin Virol 7:73–78. https://doi.org/10.1016/j.coviro.2014.05.004
doi: 10.1016/j.coviro.2014.05.004
pubmed: 24983512
Osanya A, Song EH, Metz K, Shimak RM, Boggiatto PM, Huffman E, Johnson C, Hostetter JM, Pohl NL, Petersen CA (2011) Pathogen-derived oligosaccharides improve innate immune response to intracellular parasite infection. Am J Pathol 179(3):1329–1337. https://doi.org/10.1016/j.ajpath.2011.05.053
doi: 10.1016/j.ajpath.2011.05.053
pubmed: 21763266
pmcid: 3157181
Pan Q, Chen H, Wang F, Jeza VT, Hou W, Zhao Y, Xiang T, Zhu Y, Endo Y, Fujita T, Zhang XL (2012) L-ficolin binds to the glycoproteins hemagglutinin and neuraminidase and inhibits influenza a virus infection both in vitro and in vivo. J Innate Immun 4(3):312–324. https://doi.org/10.1159/000335670
doi: 10.1159/000335670
pubmed: 22399010
pmcid: 6741490
Pan Q, Wang Q, Sun X, Xia X, Wu S, Luo F, Zhang XL (2014) Aptamer against mannose-capped lipoarabinomannan inhibits virulent Mycobacterium tuberculosis infection in mice and rhesus monkeys. Molecular therapy : the journal of the American Society of Gene Therapy 22(5):940–951. https://doi.org/10.1038/mt.2014.31
doi: 10.1038/mt.2014.31
Papandréou MJ, Barbouche R, Guieu R, Kieny MP, Fenouillet E (2002) The alpha-glucosidase inhibitor 1-deoxynojirimycin blocks human immunodeficiency virus envelope glycoprotein-mediated membrane fusion at the CXCR4 binding step. Mol Pharmacol 61(1):186–193. https://doi.org/10.1124/mol.61.1.186
doi: 10.1124/mol.61.1.186
pubmed: 11752220
Parodi AJ (2000) Protein glucosylation and its role in protein folding. Annu Rev Biochem 69:69–93. https://doi.org/10.1146/annurev.biochem.69.1.69
doi: 10.1146/annurev.biochem.69.1.69
pubmed: 10966453
Paulson JC, de Vries RP (2013) H5N1 receptor specificity as a factor in pandemic risk. Virus Res 178(1):99–113. https://doi.org/10.1016/j.virusres.2013.02.015
doi: 10.1016/j.virusres.2013.02.015
pubmed: 23619279
Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, Lung TW, Mansell A, Riedmaier P, Oates CV, Zaid A, Mühlen S, Crepin VF, Marches O, Ang CS, Williamson NA, O’Reilly LA, Bankovacki A, Nachbur U, Infusini G, Webb AI, Silke J, Strasser A, Frankel G, Hartland EL (2013) A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature 501(7466):247–251. https://doi.org/10.1038/nature12524
doi: 10.1038/nature12524
pubmed: 24025841
pmcid: 3836246
Pradat P, Virlogeux V, Trépo E (2018) Epidemiology and elimination of HCV-related liver disease. Viruses 10(10). https://doi.org/10.3390/v10100545
Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, Dijkman R, Muth D, Demmers JA, Zaki A, Fouchier RA, Thiel V, Drosten C, Rottier PJ, Osterhaus AD, Bosch BJ, Haagmans BL (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495(7440):251–254. https://doi.org/10.1038/nature12005
doi: 10.1038/nature12005
pubmed: 23486063
pmcid: 7095326
Ren Y, Ding Q, Zhang X (2014) Ficolins and infectious diseases. Virol Sin 29(1):25–32. https://doi.org/10.1007/s12250-014-3421-2
doi: 10.1007/s12250-014-3421-2
pubmed: 24452543
pmcid: 8206374
Ren Y, Min YQ, Liu M, Chi L, Zhao P, Zhang XL (2016) N-glycosylation-mutated HCV envelope glycoprotein complex enhances antigen-presenting activity and cellular and neutralizing antibody responses. Biochim Biophys Acta 1860(8):1764–1775. https://doi.org/10.1016/j.bbagen.2015.08.007
doi: 10.1016/j.bbagen.2015.08.007
pubmed: 26278021
Schommer NN, Muto J, Nizet V, Gallo RL (2014) Hyaluronan breakdown contributes to immune defense against group A Streptococcus. J Biol Chem 289(39):26914–26921. https://doi.org/10.1074/jbc.M114.575621
doi: 10.1074/jbc.M114.575621
pubmed: 25122767
pmcid: 4175332
Semchenko EA, Day CJ, Moutin M, Wilson JC, Tiralongo J, Korolik V (2012) Structural heterogeneity of terminal glycans in campylobacter jejuni lipooligosaccharides. PLoS One 7(7):e40920. https://doi.org/10.1371/journal.pone.0040920
doi: 10.1371/journal.pone.0040920
pubmed: 22815868
pmcid: 3397941
Shah NS, Pratt R, Armstrong L, Robison V, Castro KG, Cegielski JP (2008) Extensively drug-resistant tuberculosis in the United States, 1993–2007. JAMA 300(18):2153–2160. https://doi.org/10.1001/jama.300.18.2153
doi: 10.1001/jama.300.18.2153
pubmed: 19001626
Sokurenko EV, Chesnokova V, Dykhuizen DE, Ofek I, Wu XR, Krogfelt KA, Struve C, Schembri MA, Hasty DL (1998) Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc Natl Acad Sci U S A 95(15):8922–8926. https://doi.org/10.1073/pnas.95.15.8922
doi: 10.1073/pnas.95.15.8922
pubmed: 9671780
pmcid: 21178
Song W, Gui M, Wang X, Xiang Y (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 14(8):e1007236. https://doi.org/10.1371/journal.ppat.1007236
doi: 10.1371/journal.ppat.1007236
pubmed: 30102747
pmcid: 6107290
Spaulding CN, Klein RD, Ruer S, Kau AL, Schreiber HL, Cusumano ZT, Dodson KW, Pinkner JS, Fremont DH, Janetka JW, Remaut H, Gordon JI, Hultgren SJ (2017) Selective depletion of uropathogenic E. coli from the gut by a FimH antagonist. Nature 546(7659):528–532. https://doi.org/10.1038/nature22972
doi: 10.1038/nature22972
pubmed: 28614296
pmcid: 5654549
Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine JP, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476. https://doi.org/10.1038/nchembio.1525
doi: 10.1038/nchembio.1525
pubmed: 24814672
pmcid: 4158828
Sun X, Pan Q, Yuan C, Wang Q, Tang XL, Ding K, Zhou X, Zhang XL (2016) A single ssDNA aptamer binding to mannose-capped lipoarabinomannan of Bacillus Calmette-Guérin enhances immunoprotective effect against tuberculosis. J Am Chem Soc 138(36):11680–11689. https://doi.org/10.1021/jacs.6b05357
doi: 10.1021/jacs.6b05357
pubmed: 27529508
Taira S, Kodama N, Matsushita M, Fujita T (2000) Opsonic function and concentration of human serum ficolin/P35. Fukushima J Med Sci 46(1–2):13–23. https://doi.org/10.5387/fms.46.13
doi: 10.5387/fms.46.13
pubmed: 11446374
Takamatsu S, Shimomura M, Kamada Y, Maeda H, Sobajima T, Hikita H, Iijima M, Okamoto Y, Misaki R, Fujiyama K, Nagamori S, Kanai Y, Takehara T, Ueda K, Kuroda S, Miyoshi E (2016) Core-fucosylation plays a pivotal role in hepatitis B pseudo virus infection: a possible implication for HBV glycotherapy. Glycobiology 26(11):1180–1189. https://doi.org/10.1093/glycob/cww067
doi: 10.1093/glycob/cww067
pubmed: 27329181
Tang XL, Yuan CH, Ding Q, Zhou Y, Pan Q, Zhang XL (2017) Selection and identification of specific glycoproteins and glycan biomarkers of macrophages involved in Mycobacterium tuberculosis infection. Tuberculosis (Edinburgh, Scotland) 104:95–106. https://doi.org/10.1016/j.tube.2017.03.010
doi: 10.1016/j.tube.2017.03.010
Tao SC, Li Y, Zhou J, Qian J, Schnaar RL, Zhang Y, Goldstein IJ, Zhu H, Schneck JP (2008) Lectin microarrays identify cell-specific and functionally significant cell surface glycan markers. Glycobiology 18(10):761–769. https://doi.org/10.1093/glycob/cwn063
doi: 10.1093/glycob/cwn063
pubmed: 18625848
pmcid: 2733773
Tate MD, Job ER, Deng YM, Gunalan V, Maurer-Stroh S, Reading PC (2014) Playing hide and seek: how glycosylation of the influenza virus hemagglutinin can modulate the immune response to infection. Viruses 6(3):1294–1316. https://doi.org/10.3390/v6031294
doi: 10.3390/v6031294
pubmed: 24638204
pmcid: 3970151
Torrelles JB, Schlesinger LS (2010) Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis (Edinb) 90(2):84–93. https://doi.org/10.1016/j.tube.2010.02.003
doi: 10.1016/j.tube.2010.02.003
Trombetta ES, Helenius A (1998) Lectins as chaperones in glycoprotein folding. Curr Opin Struct Biol 8(5):587–592. https://doi.org/10.1016/s0959-440x(98)80148-6
doi: 10.1016/s0959-440x(98)80148-6
pubmed: 9818262
Tsujimura M, Ishida C, Sagara Y, Miyazaki T, Murakami K, Shiraki H, Okochi K, Maeda Y (2001) Detection of serum thermolabile beta-2 macroglycoprotein (Hakata antigen) by enzyme-linked immunosorbent assay using polysaccharide produced by Aerococcus viridans. Clin Diagn Lab Immunol 8(2):454–459. https://doi.org/10.1128/cdli.8.2.454-459.2001
doi: 10.1128/cdli.8.2.454-459.2001
pubmed: 11238239
pmcid: 96080
Uria MJ, Zhang Q, Li Y, Chan A, Exley RM, Gollan B, Chan H, Feavers I, Yarwood A, Abad R, Borrow R, Fleck RA, Mulloy B, Vazquez JA, Tang CM (2008) A generic mechanism in Neisseria meningitidis for enhanced resistance against bactericidal antibodies. J Exp Med 205(6):1423–1434. https://doi.org/10.1084/jem.20072577
doi: 10.1084/jem.20072577
pubmed: 18504306
pmcid: 2413038
Vadrevu SK, Trbojevic-Akmacic I, Kossenkov AV, Colomb F, Giron LB, Anzurez A, Lynn K, Mounzer K, Landay AL, Kaplan RC, Papasavvas E, Montaner LJ, Lauc G, Abdel-Mohsen M (2018) Frontline science: plasma and immunoglobulin G galactosylation associate with HIV persistence during antiretroviral therapy. J Leukoc Biol 104(3):461–471. https://doi.org/10.1002/jlb.3hi1217-500r
doi: 10.1002/jlb.3hi1217-500r
pubmed: 29633346
Vigerust DJ, Shepherd VL (2007) Virus glycosylation: role in virulence and immune interactions. Trends Microbiol 15(5):211–218. https://doi.org/10.1016/j.tim.2007.03.003
doi: 10.1016/j.tim.2007.03.003
pubmed: 17398101
pmcid: 7127133
Waespy M, Gbem TT, Elenschneider L, Jeck AP, Day CJ, Hartley-Tassell L, Bovin N, Tiralongo J, Haselhorst T, Kelm S (2015) Carbohydrate recognition specificity of trans-sialidase lectin domain from trypanosoma congolense. PLoS Negl Trop Dis 9(10):e0004120. https://doi.org/10.1371/journal.pntd.0004120
doi: 10.1371/journal.pntd.0004120
pubmed: 26474304
pmcid: 4608562
Watanabe Y, Bowden TA, Wilson IA, Crispin M (2019) Exploitation of glycosylation in enveloped virus pathobiology. Biochimica et Biophysica Acta General Subjects 1863(10):1480–1497. https://doi.org/10.1016/j.bbagen.2019.05.012
doi: 10.1016/j.bbagen.2019.05.012
pubmed: 31121217
pmcid: 6686077
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science (NY) 369(6501):330–333. https://doi.org/10.1126/science.abb9983
doi: 10.1126/science.abb9983
Waziry R, Hajarizadeh B, Grebely J, Amin J, Law M, Danta M, George J, Dore GJ (2017) Hepatocellular carcinoma risk following direct-acting antiviral HCV therapy: a systematic review, meta-analyses, and meta-regression. J Hepatol 67(6):1204–1212. https://doi.org/10.1016/j.jhep.2017.07.025
doi: 10.1016/j.jhep.2017.07.025
pubmed: 28802876
Wolk T, Schreiber M (2006) N-Glycans in the gp120 V1/V2 domain of the HIV-1 strain NL4-3 are indispensable for viral infectivity and resistance against antibody neutralization. Med Microbiol Immunol 195(3):165–172. https://doi.org/10.1007/s00430-006-0016-z
doi: 10.1007/s00430-006-0016-z
pubmed: 16547752
Xiang T, Yang G, Liu X, Zhou Y, Fu Z, Lu F, Gu J, Taniguchi N, Tan Z, Chen X, Xie Y, Guan F, Zhang XL (2017) Alteration of N-glycan expression profile and glycan pattern of glycoproteins in human hepatoma cells after HCV infection. Biochimica et Biophysica Acta General Subjects 1861(5 Pt A):1036–1045. https://doi.org/10.1016/j.bbagen.2017.02.014
doi: 10.1016/j.bbagen.2017.02.014
pubmed: 28229927
Xiong X, Tortorici MA, Snijder J, Yoshioka C, Walls AC, Li W, McGuire AT, Rey FA, Bosch BJ, Veesler D (2018) Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections. J Virol 92(4). https://doi.org/10.1128/jvi.01628-17
Yolitz J, Schwing C, Chang J, van Ryk D, Nawaz F, Wei D, Cicala C, Arthos J, Fauci AS (2018) Signal peptide of HIV envelope protein impacts glycosylation and antigenicity of gp120. Proc Natl Acad Sci U S A 115(10):2443–2448. https://doi.org/10.1073/pnas.1722627115
doi: 10.1073/pnas.1722627115
pubmed: 29463753
pmcid: 5877976
Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M, Akashi K, Yamasaki S (2014) Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 41(3):402–413. https://doi.org/10.1016/j.immuni.2014.08.005
doi: 10.1016/j.immuni.2014.08.005
pubmed: 25176311
Yuan C, Qu ZL, Tang XL, Liu Q, Luo W, Huang C, Pan Q, Zhang XL (2019) Mycobacterium tuberculosis mannose-capped lipoarabinomannan induces IL-10-producing B cells and hinders CD4(+)Th1 immunity. iScience 11:13–30. https://doi.org/10.1016/j.isci.2018.11.039
doi: 10.1016/j.isci.2018.11.039
pubmed: 30572206
Zajonc DM, Ainge GD, Painter GF, Severn WB, Wilson IA (2006) Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d. J Immunol 177(7):4577–4583. https://doi.org/10.4049/jimmunol.177.7.4577
doi: 10.4049/jimmunol.177.7.4577
pubmed: 16982895
Zhang X, Chen S, Jiang Y, Huang K, Huang J, Yang D, Zhu J, Zhu Y, Shi S, Peng D, Liu X (2015) Hemagglutinin glycosylation modulates the pathogenicity and antigenicity of the H5N1 avian influenza virus. Vet Microbiol 175(2–4):244–256. https://doi.org/10.1016/j.vetmic.2014.12.011
doi: 10.1016/j.vetmic.2014.12.011
pubmed: 25544041
Zhao Y, Ren Y, Zhang X, Zhao P, Tao W, Zhong J, Li Q, Zhang XL (2014) Ficolin-2 inhibits hepatitis C virus infection, whereas apolipoprotein E3 mediates viral immune escape. J Immunol 193(2):783–796. https://doi.org/10.4049/jimmunol.1302563
doi: 10.4049/jimmunol.1302563
pubmed: 24928988
Zocher G, Mistry N, Frank M, Hähnlein-Schick I, Ekström JO, Arnberg N, Stehle T (2014) A sialic acid binding site in a human picornavirus. PLoS Pathog 10(10):e1004401. https://doi.org/10.1371/journal.ppat.1004401
doi: 10.1371/journal.ppat.1004401
pubmed: 25329320
pmcid: 4199766