Febuxostat ameliorates high salt intake-induced hypertension and renal damage in Dahl salt-sensitive rats.
Journal
Journal of hypertension
ISSN: 1473-5598
Titre abrégé: J Hypertens
Pays: Netherlands
ID NLM: 8306882
Informations de publication
Date de publication:
01 02 2022
01 02 2022
Historique:
pubmed:
9
9
2021
medline:
28
1
2022
entrez:
8
9
2021
Statut:
ppublish
Résumé
Several clinical studies have reported that xanthine oxidoreductase inhibitors have antihypertensive and renal protective effects but their mechanisms have not been fully determined. This study aims to clarify these mechanisms by examining the effects of febuxostat, which is a novel selective xanthine oxidoreductase inhibitor, in Dahl salt-sensitive rats. Eight-week-old male Dahl salt-sensitive rats were fed a normal salt (0.6% NaCl) or high salt (8% NaCl) diet for 8 weeks. A portion of the rats that were fed high salt diet were treated with febuxostat (3 mg/kg per day) simultaneously. Additionally, acute effects of febuxostat (3 mg/kg per day) were examined after high salt diet feeding for 4 or 8 weeks. Treatment with febuxostat for 8 weeks attenuated high salt diet-induced hypertension, renal dysfunction, glomerular injury, and renal interstitial fibrosis. Febuxostat treatment reduced urinary excretion of H2O2 and malondialdehyde and renal thiobarbituric acid reactive substances content. High salt diet increased xanthine oxidoreductase activity and expression in the proximal tubules and medullary interstitium. Febuxostat completely inhibited xanthine oxidoreductase activity and attenuated the high salt diet-increased xanthine oxidoreductase expression. Febuxostat transiently increased urine volume and Na+ excretion without change in blood pressure or urinary creatinine excretion after high salt diet feeding for 4 or 8 weeks. Febuxostat ameliorates high salt diet-induced hypertension and renal damage with a reduction of renal oxidative stress in Dahl salt-sensitive rats. The antihypertensive effect of febuxostat may be mediated in part by diuretic and natriuretic action.
Identifiants
pubmed: 34495901
doi: 10.1097/HJH.0000000000003012
pii: 00004872-900000000-96557
doi:
Substances chimiques
Sodium Chloride, Dietary
0
Febuxostat
101V0R1N2E
Hydrogen Peroxide
BBX060AN9V
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
327-337Informations de copyright
Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.
Références
Berry CE, Hare JM. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 2004; 555:589–606.
Doehner W, Landmesser U. Xanthine oxidase and uric acid in cardiovascular disease: clinical impact and therapeutic options. Semin Nephrol 2011; 31:433–440.
McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985; 312:159–163.
Beattie CJ, Fulton RL, Higgins P, Padmanabhan S, McCallum L, Walters MR, et al. Allopurinol initiation and change in blood pressure in older adults with hypertension. Hypertension 2014; 64:1102–1107.
Feig DI, Soletsky B, Johnson RJ. Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial. JAMA 2008; 300:924–932.
Kanbay M, Ozkara A, Selcoki Y, Isik B, Turgut F, Bavbek N, et al. Effect of treatment of hyperuricemia with allopurinol on blood pressure, creatinine clearence, and proteinuria in patients with normal renal functions. Int Urol Nephrol 2007; 39:1227–1233.
Kim HA, Seo YI, Song YW. Four-week effects of allopurinol and febuxostat treatments on blood pressure and serum creatinine level in gouty men. J Korean Med Sci 2014; 29:1077–1081.
Goicoechea M, de Vinuesa SG, Verdalles U, Ruiz-Caro C, Ampuero J, Rincón A, et al. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin J Am Soc Nephrol 2010; 5:1388–1393.
Augustin AJ, Boker T, Blumenroder SH, Lutz J, Spitznas M. Free radical scavenging and antioxidant activity of allopurinol and oxypurinol in experimental lens-induced uveitis. Invest Ophthalmol Vis Sci 1994; 35:3897–3904.
Galbusera C, Orth P, Fedida D, Spector T. Superoxide radical production by allopurinol and xanthine oxidase. Biochem Pharmacol 2006; 71:1747–1752.
Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem 2003; 278:1848–1855.
Gunawardhana L, McLean L, Punzi HA, Hunt B, Palmer RN, Whelton A, et al. Effect of febuxostat on ambulatory blood pressure in subjects with hyperuricemia and hypertension: a phase 2 randomized placebo-controlled study. J Am Heart Assoc 2017; 6:e006683.
Kohagura K, Tana T, Higa A, Yamazato M, Ishida A, Nagahama K, et al. Effects of xanthine oxidase inhibitors on renal function and blood pressure in hypertensive patients with hyperuricemia. Hypertens Res 2016; 39:593–597.
Sezai A, Soma M, Nakata K, Osaka S, Ishii Y, Yaoita H, et al. Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients with chronic kidney disease (NU-FLASH trial for CKD). J Cardiol 2015; 66:298–303.
Sircar D, Chatterjee S, Waikhom R, Colay V, Raychaudhury A, Chatterjee S, et al. Efficacy of febuxostat for slowing the GFR decline in patients with CKD and asymptomatic hyperuricemia: a 6-month, double-blind, randomized, placebo-controlled trial. Am J Kidney Dis 2015; 66:945–950.
Kimura K, Hosoya T, Uchida S, Inaba M, Makino H, Maruyama S, et al. FEATHER Study Investigators. Febuxostat therapy for patients with stage 3 CKD and asymptomatic hyperuricemia: a randomized trial. Am J Kidney Dis 2018; 72:798–810.
Kojima S, Matsui K, Hiramitsu S, Hisatome I, Waki M, Uchiyama K, et al. Febuxostat for cerebral and cardiorenovascular events prevention study. Eur Heart J 2019; 40:1778–1786.
El-Bassossy HM, Shaltout HA. Allopurinol alleviates hypertension and proteinuria in high fructose, high salt and high fat induced model of metabolic syndrome. Transl Res 2015; 165:621–630.
Sánchez-Lozada LG, Tapia E, Bautista-García P, Soto V, Avila-Casado C, Vega-Campos IP, et al. Effects of febuxostat on metabolic and renal alterations in rats with fructose-induced metabolic syndrome. Am J Physiol Renal Physiol 2008; 294:F710–F718.
Wang C, Pan Y, Zhang QY, Wang FM, Kong LD. Quercetin and allopurinol ameliorate kidney injury in STZ-treated rats with regulation of renal NLRP3 inflammasome activation and lipid accumulation. PLoS One 2012; 7:e38285.
Komers R, Xu B, Schneider J, Oyama TT. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 2016; 173:2573–2588.
Tsuda H, Kawada N, Kaimori JY, Kitamura H, Moriyama T, Rakugi H, et al. Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun 2012; 427:266–272.
Omori H, Kawada N, Inoue K, Ueda Y, Yamamoto R, Matsui I, et al. Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol 2012; 16:549–556.
Sánchez-Lozada LG, Tapia E, Soto V, Avila-Casado C, Franco M, Wessale JL, et al. Effect of febuxostat on the progression of renal disease in 5/6 nephrectomy rats with and without hyperuricemia. Nephron Physiol 2008; 108:69–78.
Shirakura T, Nomura J, Matsui C, Kobayashi T, Tamura M, Masuzaki H. Febuxostat, a novel xanthine oxidoreductase inhibitor, improves hypertension and endothelial dysfunction in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:831–838.
Laakso LT, Teräväinen TL, Martelin E, Vaskonen T, Risto Lapatto R. Renal xanthine oxidoreductase activity during development of hypertension in spontaneously hypertensive rats. J Hypertens 2004; 22:1330–1340.
Szasz T, Linder AE, Davis RP, Burnett R, Fink GD, Watts SW. Allopurinol does not decrease blood pressure or prevent the development of hypertension in the deoxycorticosterone acetate-salt rat model. J Cardiovasc Pharmacol 2010; 56:627–634.
Szasz T, Davis RP, Garver HS, Burnett RJ, Fink GD, Watts SW. Long-term inhibition of xanthine oxidase by febuxostat does not decrease blood pressure in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. PLoS One 2013; 8:e56046.
Rapp JP. Dahl salt-susceptible and salt-resistant rats: a review. Hypertension 1982; 4:753–763.
Laakso J, Mervaala E, Himberg JJ, Teräväinen TL, Karppanen H, Vapaatalo H, Lapatto R. Increased kidney xanthine oxidoreductase activity in salt-induced experimental hypertension. Hypertension 1998; 32:902–906.
Ogawa Y, Takahashi J, Sakuyama A, Xu L, Miura T, Muroya Y, et al. Exercise training delays renal disorders with decreasing oxidative stress and increasing production of 20-HETE in Dahl salt-sensitive rats. J Hypertens 2020; 38:1336–1346.
Namai-Takahashi A, Sakuyama A, Nakamura T, Miura T, Takahashi J, Kurosawa R, et al. Xanthine oxidase inhibitor, febuxostat ameliorates the high salt intake-induced cardiac hypertrophy and fibrosis in Dahl salt-sensitive rats. Am J Hypertens 2019; 32:26–33.
Tian N, Moore RS, Phillips WE, Lin L, Braddy S, Pryor JS, et al. NADPH oxidase contributes to renal damage and dysfunction in Dahl salt-sensitive hypertension. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1858–R1865.
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254.
Kanazawa M, Kawamura T, Li L, Sasaki Y, Matsumoto K, Kataoka H, et al. Combination of exercise and enalapril enhances renoprotective and peripheral effects in rats with renal ablation. Am J Hypertens 2006; 19:80–86.
Yaoita E, Kawasaki K, Yamamoto T, Kihara I. Variable expression of desmin in rat glomerular epithelial cells. Am J Pathol 1990; 136:899–908.
Hu G, Xu L, Ma Y, Kohzuki M, Ito O. Chronic exercise provides renal-protective effects with upregulation of fatty acid oxidation in the kidney of high fructose-fed rats. Am J Physiol Renal Physiol 2020; 318:F826–F834.
Beckman JS, Parks DA, Pearson JD, Marshall PA, Freeman BA. A sensitive fluorometric assay for measuring xanthine dehydrogenase and oxidase in tissues. Free Radic Biol Med 1989; 6:607–615.
Yamamoto E, Kataoka K, Yamashita T, Tokutomi Y, Dong YF, Matsuba S, et al. Role of xanthine oxidoreductase in the reversal of diastolic heart failure by candesartan in the salt-sensitive hypertensive rat. Hypertension 2007; 50:657–662.
Liu J, Yan Y, Liu L, Xie Z, Malhotra D, Joe B, Shapiro JI. Impairment of Na/K-ATPase signaling in renal proximal tubule contributes to Dahl salt-sensitive hypertension. J Biol Chem 2011; 286:22806–22813.
Evans LC, Ryan RP, Broadway E, Skelton MM, Kurth T, Cowley AW Jr. Null mutation of the nicotinamide adenine dinucleotide phosphate-oxidase subunit p67phox protects the Dahl-S rat from salt-induced reductions in medullary blood flow and glomerular filtration rate. Hypertension 2015; 65:561–568.
Wang PX, Sanders PW. Mechanism of hypertensive nephropathy in the Dahl/Rapp rat: a primary disorder of vascular smooth muscle. Am J Physiol Renal Physiol 2005; 288:F236–F242.
Meng S, Cason GW, Gannon AW, Racusen LC, Manning RD Jr. Oxidative stress in Dahl salt-sensitive hypertension. Hypertension 2003; 41:1346–1352.
Hisaki R, Fujita H, Saito F, Kushiro T. Tempol attenuates the development of hypertensive renal injury in Dahl salt-sensitive rats. Am J Hypertens 2005; 18:707–713.
Taylor NE, Cowley AW Jr. Effect of renal medullary H2O2 on salt-induced hypertension and renal injury. Am J Physiol Regul Integr Comp Physiol 2005; 289:R1573–R1579.
Roman RJ, Kaldunski ML. Enhanced chloride reabsorption in the loop of Henle in Dahl salt-sensitive rats. Hypertension 1991; 17:1018–1024.
Ito O, Roman RJ. Role of 20-HETE in elevating chloride transport in the thick ascending limb of Dahl SS/Jr rats. Hypertension 1999; 33:419–423.
Silva GB, Ortiz PA, Hong NJ, Garvin JL. Superoxide stimulates NaCl absorption in the thick ascending limb via activation of protein kinase C. Hypertension 2006; 48:467–472.
Manning RD Jr, Hu L, Tan DY, Meng S. Role of abnormal nitric oxide systems in salt-sensitive hypertension. Am J Hypertens 2001; 14:68s–73s.
Kobori H, Nishiyama A, Abe Y, Navar LG. Enhancement of intrarenal angiotensinogen in Dahl salt-sensitive rats on high salt diet. Hypertension 2003; 41:592–597.