Prospects on the nano-plastic particles internalization and induction of cellular response in human keratinocytes.

Autophagy Human keratin Keratinocytes Macropinocytosis Nano-plastics Oxidative stress Protein-corona Senescence

Journal

Particle and fibre toxicology
ISSN: 1743-8977
Titre abrégé: Part Fibre Toxicol
Pays: England
ID NLM: 101236354

Informations de publication

Date de publication:
08 09 2021
Historique:
received: 22 04 2021
accepted: 31 08 2021
entrez: 9 9 2021
pubmed: 10 9 2021
medline: 21 10 2021
Statut: epublish

Résumé

Today, cosmetic products are very popular with both men and women to improve their appearance and increase their social acceptability. In this study, nano-sized (30-300 nm) plastic particles were isolated from the commercial face-scrubs and treated on the human keratinocytes. The observed adherence of polyethylene nano-plastics (PENPs), polystyrene NPs (PSNPs), and face-scrubs isolated nano-plastics (NPs) on the keratin layer reveals a significant attachment of NPs from the cosmetics that are applied on the skin for a short duration. This attachment property could facilitate further adherence of protein molecules on NPs and the protein-corona formation. The protein-corona mimics protein aggregates, thereby triggers macropinocytosis, followed by the macropinolysosomal process in the cell. These internalized NPs induced the concentration-dependent cytotoxic, cytostatic and cytoprotective activity in keratinocytes. Both single dose and chronic long-term exposure of lethal and sub-lethal concentrations of NPs resulted in oxidative stress-mediated down-regulation of cell growth and proliferation inhibition. Autophagic structures and premature aging were also observed using an electron microscopy and a senescence marker, respectively in the NPs internalized HaCaT cells incubated in a fresh, NPs-free medium. Though 2D culture models have many limitations, it produces significant conceptual advancements. This work provides an insight into the NPs concentration-dependent regulatory, cytoprotective, and cytotoxic effects in HaCaT cells. However, 3D model studies are required to identify the detailed mechanisms of NPs toxicity and cytoprotective events in cells at the molecular level.

Sections du résumé

BACKGROUND
Today, cosmetic products are very popular with both men and women to improve their appearance and increase their social acceptability.
RESULTS
In this study, nano-sized (30-300 nm) plastic particles were isolated from the commercial face-scrubs and treated on the human keratinocytes. The observed adherence of polyethylene nano-plastics (PENPs), polystyrene NPs (PSNPs), and face-scrubs isolated nano-plastics (NPs) on the keratin layer reveals a significant attachment of NPs from the cosmetics that are applied on the skin for a short duration. This attachment property could facilitate further adherence of protein molecules on NPs and the protein-corona formation. The protein-corona mimics protein aggregates, thereby triggers macropinocytosis, followed by the macropinolysosomal process in the cell. These internalized NPs induced the concentration-dependent cytotoxic, cytostatic and cytoprotective activity in keratinocytes. Both single dose and chronic long-term exposure of lethal and sub-lethal concentrations of NPs resulted in oxidative stress-mediated down-regulation of cell growth and proliferation inhibition. Autophagic structures and premature aging were also observed using an electron microscopy and a senescence marker, respectively in the NPs internalized HaCaT cells incubated in a fresh, NPs-free medium.
CONCLUSION
Though 2D culture models have many limitations, it produces significant conceptual advancements. This work provides an insight into the NPs concentration-dependent regulatory, cytoprotective, and cytotoxic effects in HaCaT cells. However, 3D model studies are required to identify the detailed mechanisms of NPs toxicity and cytoprotective events in cells at the molecular level.

Identifiants

pubmed: 34496914
doi: 10.1186/s12989-021-00428-9
pii: 10.1186/s12989-021-00428-9
pmc: PMC8424902
doi:

Substances chimiques

Microplastics 0
Plastics 0
Protein Corona 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

35

Informations de copyright

© 2021. The Author(s).

Références

Mech Ageing Dev. 1990 Feb 15;51(3):283-97
pubmed: 2308398
Chemosphere. 2019 Jul;226:726-735
pubmed: 30959457
Rev Sci Instrum. 2016 Oct;87(10):105105
pubmed: 27802720
Eur J Pharm Biopharm. 2012 Sep;82(1):151-7
pubmed: 22728016
Sci Rep. 2017 Sep 11;7(1):11105
pubmed: 28894213
Mol Cells. 2003 Dec 31;16(3):331-7
pubmed: 14744023
Sci Rep. 2019 Jun 20;9(1):8860
pubmed: 31222081
Cytotechnology. 2015 Jan;67(1):145-55
pubmed: 24337652
Sci Rep. 2017 Apr 24;7:46687
pubmed: 28436478
J Cell Biol. 2011 Feb 21;192(4):547-56
pubmed: 21321098
Environ Pollut. 2018 Apr;235:30-38
pubmed: 29274535
Clin Exp Dermatol. 2012 Oct;37(7):772-80
pubmed: 22439662
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13010-5
pubmed: 19651612
Free Radic Biol Med. 2003 Aug 1;35(3):236-56
pubmed: 12885586
Environ Toxicol Chem. 2015 Nov;34(11):2564-72
pubmed: 26042578
Autophagy. 2005 Oct-Dec;1(3):131-40
pubmed: 16874025
Toxicol In Vitro. 2019 Dec;61:104610
pubmed: 31362040
Eur Arch Psychiatry Clin Neurosci. 2004 Jun;254(3):143-7
pubmed: 15205966
Biochem Biophys Res Commun. 2003 Jun 6;305(3):510-7
pubmed: 12763022
Mar Pollut Bull. 2015 Mar 15;92(1-2):99-104
pubmed: 25662316
J Agric Food Chem. 2004 Apr 7;52(7):2016-20
pubmed: 15053545
J Biophotonics. 2018 Apr;11(4):e201700169
pubmed: 29178669
Curr Opin Clin Nutr Metab Care. 2014 Jul;17(4):324-8
pubmed: 24848532
Mar Pollut Bull. 2015 Oct 15;99(1-2):178-85
pubmed: 26234612
Mol Neurodegener. 2015 Oct 31;10:57
pubmed: 26520394
Cold Spring Harb Protoc. 2011 Feb 01;2011(2):pdb.prot5570
pubmed: 21285270
ACS Nano. 2009 Feb 24;3(2):279-90
pubmed: 19236062
Autophagy. 2013 May;9(5):808-12
pubmed: 23422284
Mar Pollut Bull. 2018 Nov;136:135-140
pubmed: 30509794
Philos Trans R Soc Lond B Biol Sci. 2009 Jul 27;364(1526):1973-6
pubmed: 19528049
Chemosphere. 2016 Jun;152:383-91
pubmed: 26994432
J Biol Chem. 1972 May 25;247(10):3170-5
pubmed: 4623845
Free Radic Biol Med. 2010 Jan 15;48(2):196-206
pubmed: 19874887
Chem Res Toxicol. 2021 Apr 19;34(4):1069-1081
pubmed: 33720697
NPJ Microgravity. 2021 Jun 1;7(1):20
pubmed: 34075058
J Cell Biol. 2002 Sep 16;158(6):1119-31
pubmed: 12221069
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2006 Jul;150(1):25-38
pubmed: 16936899
Mar Pollut Bull. 2017 Oct 15;123(1-2):122-126
pubmed: 28911870
Nature. 2008 Feb 28;451(7182):1069-75
pubmed: 18305538
Photochem Photobiol. 1996 May;63(5):601-7
pubmed: 8628751
J Pharm Sci. 2012 Nov;101(11):4231-9
pubmed: 22855370
Curr Protoc Immunol. 2015 Nov 02;111:A3.B.1-A3.B.3
pubmed: 26529666
Sci Total Environ. 2019 Sep 20;684:657-669
pubmed: 31158627
Environ Sci Technol. 2016 Aug 16;50(16):8849-57
pubmed: 27438693
Environ Pollut. 2016 May;212:251-256
pubmed: 26851981
Environ Pollut. 2015 Dec;207:190-5
pubmed: 26386204
J Cell Biol. 2018 Jan 2;217(1):65-77
pubmed: 29114066
Environ Pollut. 2017 Jan;220(Pt A):495-503
pubmed: 27745914
Cell Biol Int. 2000;24(10):757-60
pubmed: 11023655
Cell Biol Int. 2004;28(7):557-63
pubmed: 15261164
Arch Toxicol. 2019 Jul;93(7):1817-1833
pubmed: 31139862
Skin Pharmacol Appl Skin Physiol. 2001;14 Suppl 1:17-22
pubmed: 11509902
J Immunol. 2011 Jul 15;187(2):613-7
pubmed: 21677136
Nanotoxicology. 2011 Jun;5(2):125-39
pubmed: 21425910
Antioxid Redox Signal. 2008 Aug;10(8):1343-74
pubmed: 18522489
Proc Natl Acad Sci U S A. 2011 Mar 1;108(9):3548-53
pubmed: 21321227
Curr Biol. 2013 Dec 2;23(23):R1031-3
pubmed: 24309274
Skin Pharmacol Physiol. 2005 Mar-Apr;18(2):75-80
pubmed: 15767768
Prion. 2016 Mar 3;10(2):119-26
pubmed: 26963158
Sci Total Environ. 2017 Dec 31;609:1312-1321
pubmed: 28793400
Ecotoxicol Environ Saf. 2020 Mar 1;190:110133
pubmed: 31896473
Environ Sci Technol. 2012 Oct 16;46(20):11327-35
pubmed: 22963286
Mar Pollut Bull. 2019 Feb;139:91-99
pubmed: 30686453
J Burn Care Rehabil. 1995 Mar-Apr;16(2 Pt 1):104-10
pubmed: 7775502
J Biol Chem. 2012 Aug 24;287(35):29722-8
pubmed: 22753412
J Invest Dermatol. 2009 May;129(5):1156-64
pubmed: 19052565
Life Sci. 1991;48(6):517-21
pubmed: 1899460
Ann Occup Hyg. 2004 Jan;48(1):65-73
pubmed: 14718347
Biol Pharm Bull. 2002 May;25(5):569-72
pubmed: 12033494
Chemosphere. 2021 Jan;263:128181
pubmed: 33297148
Chem Rev. 2011 May 11;111(5):3407-32
pubmed: 21401073
Doc Ophthalmol. 2003 Mar;106(2):129-36
pubmed: 12678277
J Chromatogr. 1986 Mar 7;375(2):431-7
pubmed: 3700569
Environ Sci Technol. 2013 Oct 1;47(19):11278-83
pubmed: 23988225
Biol Chem. 1997 Nov;378(11):1247-57
pubmed: 9426184
Environ Health. 2014 Dec 04;13:103
pubmed: 25477047
Environ Sci Technol. 2011 Feb 15;45(4):1466-72
pubmed: 21268630
Mar Pollut Bull. 2009 Aug;58(8):1225-1228
pubmed: 19481226
Genes Dev. 2009 Apr 1;23(7):784-7
pubmed: 19339684
Genes Dev. 2010 Nov 15;24(22):2463-79
pubmed: 21078816
Toxicol Lett. 2014 Jun 5;227(2):139-49
pubmed: 24657526
Cell Death Differ. 2015 Mar;22(3):377-88
pubmed: 25257172
Inhal Toxicol. 2007;19 Suppl 1:189-98
pubmed: 17886067
Nat Commun. 2016 Apr 06;7:11190
pubmed: 27048913
J Tissue Viability. 2017 Feb;26(1):37-46
pubmed: 27020864
Bioresour Technol. 2010 May;101(10):3737-42
pubmed: 20116238
Ageing Res Rev. 2015 May;21:16-29
pubmed: 25653189
Cell Biochem Biophys. 2006;45(2):177-84
pubmed: 16757818

Auteurs

Ponnusamy Manogaran Gopinath (PM)

Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India.

Krishna Sundar Twayana (KS)

Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India.

Palaniyandi Ravanan (P)

Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India. ravanan@cutn.ac.in.
Department of Microbiology, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 104, India. ravanan@cutn.ac.in.
Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India.

Amitava Mukherjee (A)

Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India.

David F Jenkins (DF)

Faculty of Science and Environment, Plymouth University, Plymouth, PL4 8AA, UK.

Natarajan Chandrasekaran (N)

Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Tamil Nadu, Vellore, 632 014, India. nchandrasekaran@vit.ac.in.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH