Tunable self-assembled Casimir microcavities and polaritons.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2021
Historique:
received: 16 03 2021
accepted: 15 07 2021
entrez: 9 9 2021
pubmed: 10 9 2021
medline: 10 9 2021
Statut: ppublish

Résumé

Spontaneous formation of ordered structures-self-assembly-is ubiquitous in nature and observed on different length scales, ranging from atomic and molecular systems to micrometre-scale objects and living matter

Identifiants

pubmed: 34497392
doi: 10.1038/s41586-021-03826-3
pii: 10.1038/s41586-021-03826-3
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

214-219

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).
doi: 10.1126/science.1070821
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. in Nanoscience and Technology: a Collection of Reviews from Nature Journals (ed. Rodgers, P.) 38–49 (World Scientific/Nature Publishing Group, 2010).
Batista, C. A. S., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 1242477 (2015).
doi: 10.1126/science.1242477
Khitrova, G., Gibbs, H., Kira, M., Koch, S. W. & Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2, 81–90 (2006).
doi: 10.1038/nphys227
Törmä, P. & Barnes, W. L. Strong coupling between surface plasmon polaritons and emitters: a review. Rep. Prog. Phys. 78, 013901 (2015).
doi: 10.1088/0034-4885/78/1/013901
Baranov, D. G., Wersäll, M., Cuadra, J., Antosiewicz, T. J. & Shegai, T. Novel nanostructures and materials for strong light-matter interactions. ACS Photon. 5, 24–42 (2018).
doi: 10.1021/acsphotonics.7b00674
Eichenfield, M., Camacho, R., Chan, J., Vahala, K. J. & Painter, O. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature 459, 550–555 (2009).
doi: 10.1038/nature08061
Zhao, R. et al. Stable Casimir equilibria and quantum trapping. Science 364, 984–987 (2019).
doi: 10.1126/science.aax0916
Thomas, A. et al. Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew. Chem. Int. Edn 55, 11462–11466 (2016).
doi: 10.1002/anie.201605504
Casimir, H. B. G. On the attraction between two perfectly conducting plates. Kon. Ned. Akad. Wetensch. Proc. 51, 793–795 (1948).
Rodriguez, A. W. et al. Classical and fluctuation-induced electromagnetic interactions in micron-scale systems: designer bonding, antibonding, and Casimir forces. Ann. Phys. 527, 45–80 (2015).
doi: 10.1002/andp.201400160
Derjaguin, B. V. & Landau, L. D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. URSS 14, 633–662 (1941).
Verwey, E. J. W. Theory of the stability of lyophobic colloids. J. Phys. Chem. 51, 631–636 (1947).
doi: 10.1021/j150453a001
Lifshitz, E. M. The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73–83 (1956).
Dzyaloshinskii, I. E., Lifshitz, E. M. & Pitaevskii, L. P. The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961).
doi: 10.1080/00018736100101281
van Blokland, P. H. & Overbeek, J. T. G. Van der Waals forces between objects covered with a chromium layer. J. Chem. Soc. Faraday Trans. I 74, 2637–2651 (1978).
doi: 10.1039/f19787402637
Lamoreaux, S. K. Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5–8 (1997).
doi: 10.1103/PhysRevLett.78.5
Bressi, G., Carugno, G., Onofrio, R. & Ruoso, G. Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002).
doi: 10.1103/PhysRevLett.88.041804
Munday, J. N., Capasso, F. & Parsegian, V. A. Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170–173 (2009).
doi: 10.1038/nature07610
Munday, J. & Capasso, F. Repulsive Casimir and van der Waals forces: from measurements to future technologies. Int. J. Mod. Phys. A 25, 2252–2259 (2010).
doi: 10.1142/S0217751X10049529
Tang, L. et al. Measurement of non-monotonic Casimir forces between silicon nanostructures. Nat. Photon. 11, 97–101 (2017).
doi: 10.1038/nphoton.2016.254
Cho, Y. K., Wartena, R., Tobias, S. M. & Chiang, Y.-M. Self-assembling colloidal-scale devices: selecting and using short-range surface forces between conductive solids. Adv. Funct. Mater. 17, 379–389 (2007).
doi: 10.1002/adfm.200600846
Biggs, S. & Mulvaney, P. Measurement of the forces between gold surfaces in water by atomic force microscopy. J. Chem. Phys. 100, 8501–8505 (1994).
doi: 10.1063/1.466748
Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 2015).
Chen, S. et al. Rapid seedless synthesis of gold nanoplates with microscaled edge length in a high yield and their application in SERS. Nano-Micro Lett. 8, 328–335 (2016).
doi: 10.1007/s40820-016-0092-6
Li, R. et al. Study on the assembly structure variation of cetyltrimethylammonium bromide on the surface of gold nanoparticles. ACS Omega 5, 4943–4952 (2020).
doi: 10.1021/acsomega.9b03823
Liu, Y., Tourbin, M., Lachaize, S. & Guiraud, P. Silica nanoparticles separation from water: aggregation by cetyltrimethylammonium bromide (CTAB). Chemosphere 92, 681–687 (2013).
doi: 10.1016/j.chemosphere.2013.03.048
Chen, F., Mohideen, U., Klimchitskaya, G. & Mostepanenko, V. Demonstration of the lateral Casimir force. Phys. Rev. Lett. 88, 101801 (2002).
doi: 10.1103/PhysRevLett.88.101801
Chen, F., Mohideen, U., Klimchitskaya, G. & Mostepanenko, V. Experimental and theoretical investigation of the lateral Casimir force between corrugated surfaces. Phys. Rev. A 66, 032113 (2002).
doi: 10.1103/PhysRevA.66.032113
Rodrigues, R. B., Neto, P. A. M., Lambrecht, A. & Reynaud, S. Lateral Casimir force beyond the proximity-force approximation. Phys. Rev. Lett. 96, 100402 (2006).
doi: 10.1103/PhysRevLett.96.100402
Meyer, M., Le Ru, E. & Etchegoin, P. Self-limiting aggregation leads to long-lived metastable clusters in colloidal solutions. J. Phys. Chem. B 110, 6040–6047 (2006).
doi: 10.1021/jp055866b
Junginger, A. et al. Tunable strong coupling of two adjacent optical λ/2 Fabry-Pérot microresonators. Opt. Express 28, 485–493 (2020).
doi: 10.1364/OE.380068
Berkhout, A., Wolterink, T. A. & Koenderink, A. F. Strong coupling to generate complex birefringence: metasurface in the middle etalons. ACS Photon. 7, 2799 (2020).
doi: 10.1021/acsphotonics.0c01064
Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS
doi: 10.1103/PhysRevB.90.205422
Gatemala, H., Pienpinijtham, P., Thammacharoen, C. & Ekgasit, S. Rapid fabrication of silver microplates under an oxidative etching environment consisting of O
doi: 10.1039/C5CE00603A
Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).
doi: 10.1088/2053-1583/1/1/011002
Shegai, T., Brian, B., Miljkovic, V. D. & Käll, M. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates. ACS Nano 5, 2036–2041 (2011).
doi: 10.1021/nn1031406
Lifshitz, E. M. et al. in Perspectives in Theoretical Physics (ed. Pitaevski, L. P.) 329–349 (Elsevier, 1992).
Johnson, P. B. & Christy, R.-W. Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).
doi: 10.1103/PhysRevB.6.4370
Segelstein, D. The Complex Refractive Index of Water. MSc thesis, Univ. Missouri (1981).
Kadirov, M. K., Litvinov, A. I., Nizameev, I. R. & Zakharova, L. Y. Adsorption and premicellar aggregation of CTAB molecules and fabrication of nanosized platinum lattice on the glass surface. J. Phys. Chem. C 118, 19785–19794 (2014).
doi: 10.1021/jp503988a

Auteurs

Battulga Munkhbat (B)

Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.

Adriana Canales (A)

Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.

Betül Küçüköz (B)

Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.

Denis G Baranov (DG)

Department of Physics, Chalmers University of Technology, Gothenburg, Sweden.
Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.

Timur O Shegai (TO)

Department of Physics, Chalmers University of Technology, Gothenburg, Sweden. timurs@chalmers.se.

Classifications MeSH