Positive allosteric mechanisms of adenosine A
Adenosine
/ chemistry
Allosteric Regulation
/ drug effects
Analgesia
/ methods
Animals
Binding Sites
Disease Models, Animal
Female
GTP-Binding Protein alpha Subunit, Gi2
/ chemistry
Hyperalgesia
/ drug therapy
Lipids
Male
Neuralgia
/ drug therapy
Protein Stability
/ drug effects
Rats
Rats, Sprague-Dawley
Receptor, Adenosine A1
/ chemistry
Signal Transduction
/ drug effects
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2021
09 2021
Historique:
received:
06
11
2020
accepted:
11
08
2021
pubmed:
10
9
2021
medline:
5
2
2022
entrez:
9
9
2021
Statut:
ppublish
Résumé
The adenosine A
Identifiants
pubmed: 34497422
doi: 10.1038/s41586-021-03897-2
pii: 10.1038/s41586-021-03897-2
pmc: PMC8711093
mid: NIHMS1760031
doi:
Substances chimiques
Lipids
0
Receptor, Adenosine A1
0
GTP-Binding Protein alpha Subunit, Gi2
EC 3.6.5.1
Adenosine
K72T3FS567
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
571-576Subventions
Organisme : American Heart Association-American Stroke Association
ID : 17SDG33370094
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM132572
Pays : United States
Commentaires et corrections
Type : CommentIn
Informations de copyright
© 2021. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Nakamura, I., Ohta, Y. & Kemmotsu, O. M. Characterization of adenosine receptors mediating spinal sensory transmission related to nociceptive information in the rat. Anesthesiology 87, 577–584 (1997).
pubmed: 9316963
doi: 10.1097/00000542-199709000-00018
Poon, A. & Sawynok, J. Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74, 235–245 (1998).
pubmed: 9520238
doi: 10.1016/S0304-3959(97)00186-3
Zylka, M. J. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol. Med. 17, 188–196 (2011).
pubmed: 21236731
pmcid: 3078941
doi: 10.1016/j.molmed.2010.12.006
King, A. Analgesia without opioids. Nature 573, S4 (2019).
doi: 10.1038/d41586-019-02683-5
Busse, J. W. et al. Opioids for chronic noncancer pain: a systematic review and meta-analysis. JAMA 320, 2448–2460 (2018).
pubmed: 30561481
pmcid: 6583638
doi: 10.1001/jama.2018.18472
Ribeiro, J. A., Sebastião, A. M. & de Mendonça, A. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 68, 377–392 (2002).
pubmed: 12576292
doi: 10.1016/S0301-0082(02)00155-7
Choca, J. I., Proudfit, H. K. & Green, R. D. Identification of A
pubmed: 3656118
Choca, J. I., Green, R. D. & Proudfit, H. K. Adenosine A
pubmed: 3183969
Yang, Z. et al. Cardiac overexpression of A
pubmed: 11834491
doi: 10.1152/ajpheart.00741.2001
Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).
pubmed: 12037145
doi: 10.1124/pr.54.2.323
May, L. T. et al. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).
pubmed: 17009927
doi: 10.1146/annurev.pharmtox.47.120505.105159
Bruns, R. F. & Fergus, J. H. Allosteric enhancement of adenosine A
pubmed: 2174510
Li, X. et al. Spinal noradrenergic activation mediates allodynia reduction from an allosteric adenosine modulator in a rat model of neuropathic pain. Pain 97, 117–125 (2002).
pubmed: 12031785
doi: 10.1016/S0304-3959(02)00011-8
Childers, S. R. et al. Allosteric modulation of adenosine A
pubmed: 15836630
doi: 10.1111/j.1471-4159.2005.03044.x
Vincenzi, F. et al. TRR469, a potent A
pubmed: 24486382
doi: 10.1016/j.neuropharm.2014.01.028
Gramec, D., Mašič, L. P. & Dolenc, M. S. Bioactivation potential of thiophene-containing drugs. Chem. Res. in Toxicol. 27, 1344–1358 (2014).
doi: 10.1021/tx500134g
Nguyen, A. T. et al. Role of the second extracellular loop of the adenosine A
pubmed: 27683013
doi: 10.1124/mol.116.105015
Miao, Y. et al. Structural basis for binding of allosteric drug leads in the adenosine A
pubmed: 30442899
pmcid: 6237911
doi: 10.1038/s41598-018-35266-x
Glukhova, A. et al. Structure of the adenosine A
pubmed: 28235198
doi: 10.1016/j.cell.2017.01.042
Thal, D. M. et al. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018).
pubmed: 29973731
doi: 10.1038/s41586-018-0259-z
Miao, Y., Feher, V. A. & McCammon, J. A. Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput. 11, 3584–3595 (2015).
pubmed: 26300708
pmcid: 4535365
doi: 10.1021/acs.jctc.5b00436
Imlach, W. L. et al. A positive allosteric modulator of the adenosine A
pubmed: 26104547
doi: 10.1124/mol.115.099499
Aurelio, L. et al. Allosteric modulators of the adenosine A
pubmed: 19514747
doi: 10.1021/jm9002582
Valant, C. et al. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc. Natl Acad. Sci. USA 111, 4614–4619 (2014).
pubmed: 24619092
pmcid: 3970544
doi: 10.1073/pnas.1320962111
Schulte, G. et al. Distribution of antinociceptive adenosine A
pubmed: 14580941
doi: 10.1016/S0306-4522(03)00480-9
Wu, Z.-Y. et al. Endomorphin-2 decreases excitatory synaptic transmission in the spinal ventral horn of the rat. Front. Neural Circuits 11, 55–55 (2017).
pubmed: 28848403
pmcid: 5550698
doi: 10.3389/fncir.2017.00055
Geiger, J. G., LaBella, F. S. & Nagy, J. I. Characterization and localization of adenosine receptors in rat spinal cord. J. Neurosci. 4, 2303–2310 (1984).
pubmed: 6090615
pmcid: 6564794
doi: 10.1523/JNEUROSCI.04-09-02303.1984
Johansson, B. et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A
pubmed: 11470917
pmcid: 55434
doi: 10.1073/pnas.161292398
Liang, Y. L. et al. Dominant negative G proteins enhance formation and purification of agonist–GPCR–G protein complexes for structure determination. ACS Pharmacol. Transl. Sci. 1, 12–20 (2018).
pubmed: 32219201
pmcid: 7089020
doi: 10.1021/acsptsci.8b00017
Draper-Joyce, C. J. et al. Structure of the adenosine-bound human adenosine A
pubmed: 29925945
doi: 10.1038/s41586-018-0236-6
Leach, K. et al. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35, 855–869 (2010).
pubmed: 19940843
doi: 10.1038/npp.2009.194
Zhang, D. et al. Two disparate ligand-binding sites in the human P2Y
pubmed: 25822790
pmcid: 4408927
doi: 10.1038/nature14287
Cheng, R. K. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115 (2017).
pubmed: 28445455
doi: 10.1038/nature22309
Robertson, N. et al. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553, 111–114 (2018).
pubmed: 29300009
doi: 10.1038/nature25025
Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019).
pubmed: 31659318
doi: 10.1038/s41589-019-0387-2
Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).
pubmed: 28581512
doi: 10.1038/nsmb.3417
Liu, X. et al. Mechanism of β
pubmed: 31249059
pmcid: 6705129
doi: 10.1126/science.aaw8981
Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 593–596 (2021).
pubmed: 33750903
pmcid: 8089099
doi: 10.1038/s41422-021-00482-0
DeVree, B. T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).
pubmed: 27362234
pmcid: 5702553
doi: 10.1038/nature18324
Seltzer, Z., Dubner, R. & Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43, 205–218 (1990).
pubmed: 1982347
doi: 10.1016/0304-3959(90)91074-S
Imlach, W. L. et al. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci. Rep.6, 37104 (2016).
pubmed: 27841371
pmcid: 5107903
doi: 10.1038/srep37104
Bonin, R. P., Bories, C. & De Koninck, Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol. Pain 10, 10–26 (2014).
doi: 10.1186/1744-8069-10-26
Størkson, R. V. et al. Lumbar catheterization of the spinal subarachnoid space in the rat. J. Neurosci. Methods 65, 167–172 (1996).
pubmed: 8740594
doi: 10.1016/0165-0270(95)00164-6
King, T. et al. Unmasking the tonic-aversive state in neuropathic pain. Nat. Neurosci. 12, 1364–1366 (2009).
pubmed: 19783992
pmcid: 3427725
doi: 10.1038/nn.2407
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci.18, 145–153 (2015).
pubmed: 25420068
doi: 10.1038/nn.3881
Schorb, M. et al. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).
pubmed: 31086343
pmcid: 7000238
doi: 10.1038/s41592-019-0396-9
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466
pmcid: 5494038
doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol.193, 1–12 (2016).
pubmed: 26592709
pmcid: 4711343
doi: 10.1016/j.jsb.2015.11.003
Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018).
pubmed: 30213947
pmcid: 6137068
doi: 10.1038/s41467-018-06002-w
Emsley, P. et al. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044
doi: 10.1107/S0907444909042073
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Baltos, J. A. et al. Quantification of adenosine A
pubmed: 26581123
doi: 10.1016/j.bcp.2015.11.013
Nguyen, A. T. et al. Extracellular loop 2 of the adenosine A
pubmed: 27683014
doi: 10.1124/mol.116.105007
Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).
pubmed: 19399780
pmcid: 2760638
doi: 10.1002/jcc.21256
Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361–1365 (2015).
pubmed: 26089515
pmcid: 4968074
doi: 10.1126/science.aaa5264
Dror, R. O. et al. Activation mechanism of the β
pubmed: 22031696
pmcid: 3219117
doi: 10.1073/pnas.1110499108
Wang, J. & Miao, Y. Mechanistic insights into specific G protein interactions with adenosine receptors. J. Phys. Chem. B 123, 6462–6473 (2019).
pubmed: 31283874
pmcid: 7026936
doi: 10.1021/acs.jpcb.9b04867
Humphrey, W., Dalke, A. & Schulten, K. VMD: xisual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
pubmed: 8744570
doi: 10.1016/0263-7855(96)00018-5
Vanommeslaeghe, K. & MacKerell, A. D. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim. Biophys. Acta 1850, 861–871 (2015).
pubmed: 25149274
doi: 10.1016/j.bbagen.2014.08.004
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2016).
pubmed: 27819658
pmcid: 5199616
doi: 10.1038/nmeth.4067
Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).
pubmed: 20496934
pmcid: 2922408
doi: 10.1021/jp101759q
Vanommeslaeghe, K. & MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154 (2012).
pubmed: 23146088
pmcid: 3528824
doi: 10.1021/ci300363c
Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012).
pubmed: 23145473
pmcid: 3528813
doi: 10.1021/ci3003649
Miao, Y. & McCammon, J. A. Graded activation and free energy landscapes of a muscarinic G-protein–coupled receptor. Proc. Natl Acad. Sci. USA 113, 12162–12167 (2016).
pubmed: 27791003
pmcid: 5087018
doi: 10.1073/pnas.1614538113
Miao, Y. & McCammon, J. A. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proc. Natl Acad. Sci. USA 115, 3036–3041 (2018).
pubmed: 29507218
pmcid: 5866610
doi: 10.1073/pnas.1800756115
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
pubmed: 16222654
pmcid: 2486339
doi: 10.1002/jcc.20289
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 98, 10089 (1993).
doi: 10.1063/1.464397
Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).
doi: 10.1016/0021-9991(77)90098-5
Bernstein, N. et al. QM/MM simulation of liquid water with an adaptive quantum region. Phys. Chem. Chem. Phys. 14, 646–656 (2012).
pubmed: 22089416
doi: 10.1039/C1CP22600B
Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).
pubmed: 26583988
doi: 10.1021/ct400341p
Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA 104, 7682–7687 (2007).
pubmed: 17452637
pmcid: 1863461
doi: 10.1073/pnas.0611448104