Positive allosteric mechanisms of adenosine A


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2021
Historique:
received: 06 11 2020
accepted: 11 08 2021
pubmed: 10 9 2021
medline: 5 2 2022
entrez: 9 9 2021
Statut: ppublish

Résumé

The adenosine A

Identifiants

pubmed: 34497422
doi: 10.1038/s41586-021-03897-2
pii: 10.1038/s41586-021-03897-2
pmc: PMC8711093
mid: NIHMS1760031
doi:

Substances chimiques

Lipids 0
Receptor, Adenosine A1 0
GTP-Binding Protein alpha Subunit, Gi2 EC 3.6.5.1
Adenosine K72T3FS567

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

571-576

Subventions

Organisme : American Heart Association-American Stroke Association
ID : 17SDG33370094
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM132572
Pays : United States

Commentaires et corrections

Type : CommentIn

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Nakamura, I., Ohta, Y. & Kemmotsu, O. M. Characterization of adenosine receptors mediating spinal sensory transmission related to nociceptive information in the rat. Anesthesiology 87, 577–584 (1997).
pubmed: 9316963 doi: 10.1097/00000542-199709000-00018
Poon, A. & Sawynok, J. Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74, 235–245 (1998).
pubmed: 9520238 doi: 10.1016/S0304-3959(97)00186-3
Zylka, M. J. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol. Med. 17, 188–196 (2011).
pubmed: 21236731 pmcid: 3078941 doi: 10.1016/j.molmed.2010.12.006
King, A. Analgesia without opioids. Nature 573, S4 (2019).
doi: 10.1038/d41586-019-02683-5
Busse, J. W. et al. Opioids for chronic noncancer pain: a systematic review and meta-analysis. JAMA 320, 2448–2460 (2018).
pubmed: 30561481 pmcid: 6583638 doi: 10.1001/jama.2018.18472
Ribeiro, J. A., Sebastião, A. M. & de Mendonça, A. Adenosine receptors in the nervous system: pathophysiological implications. Prog. Neurobiol. 68, 377–392 (2002).
pubmed: 12576292 doi: 10.1016/S0301-0082(02)00155-7
Choca, J. I., Proudfit, H. K. & Green, R. D. Identification of A
pubmed: 3656118
Choca, J. I., Green, R. D. & Proudfit, H. K. Adenosine A
pubmed: 3183969
Yang, Z. et al. Cardiac overexpression of A
pubmed: 11834491 doi: 10.1152/ajpheart.00741.2001
Christopoulos, A. & Kenakin, T. G protein-coupled receptor allosterism and complexing. Pharmacol. Rev. 54, 323–374 (2002).
pubmed: 12037145 doi: 10.1124/pr.54.2.323
May, L. T. et al. Allosteric modulation of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1–51 (2007).
pubmed: 17009927 doi: 10.1146/annurev.pharmtox.47.120505.105159
Bruns, R. F. & Fergus, J. H. Allosteric enhancement of adenosine A
pubmed: 2174510
Li, X. et al. Spinal noradrenergic activation mediates allodynia reduction from an allosteric adenosine modulator in a rat model of neuropathic pain. Pain 97, 117–125 (2002).
pubmed: 12031785 doi: 10.1016/S0304-3959(02)00011-8
Childers, S. R. et al. Allosteric modulation of adenosine A
pubmed: 15836630 doi: 10.1111/j.1471-4159.2005.03044.x
Vincenzi, F. et al. TRR469, a potent A
pubmed: 24486382 doi: 10.1016/j.neuropharm.2014.01.028
Gramec, D., Mašič, L. P. & Dolenc, M. S. Bioactivation potential of thiophene-containing drugs. Chem. Res. in Toxicol. 27, 1344–1358 (2014).
doi: 10.1021/tx500134g
Nguyen, A. T. et al. Role of the second extracellular loop of the adenosine A
pubmed: 27683013 doi: 10.1124/mol.116.105015
Miao, Y. et al. Structural basis for binding of allosteric drug leads in the adenosine A
pubmed: 30442899 pmcid: 6237911 doi: 10.1038/s41598-018-35266-x
Glukhova, A. et al. Structure of the adenosine A
pubmed: 28235198 doi: 10.1016/j.cell.2017.01.042
Thal, D. M. et al. Structural insights into G-protein-coupled receptor allostery. Nature 559, 45–53 (2018).
pubmed: 29973731 doi: 10.1038/s41586-018-0259-z
Miao, Y., Feher, V. A. & McCammon, J. A. Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput. 11, 3584–3595 (2015).
pubmed: 26300708 pmcid: 4535365 doi: 10.1021/acs.jctc.5b00436
Imlach, W. L. et al. A positive allosteric modulator of the adenosine A
pubmed: 26104547 doi: 10.1124/mol.115.099499
Aurelio, L. et al. Allosteric modulators of the adenosine A
pubmed: 19514747 doi: 10.1021/jm9002582
Valant, C. et al. Separation of on-target efficacy from adverse effects through rational design of a bitopic adenosine receptor agonist. Proc. Natl Acad. Sci. USA 111, 4614–4619 (2014).
pubmed: 24619092 pmcid: 3970544 doi: 10.1073/pnas.1320962111
Schulte, G. et al. Distribution of antinociceptive adenosine A
pubmed: 14580941 doi: 10.1016/S0306-4522(03)00480-9
Wu, Z.-Y. et al. Endomorphin-2 decreases excitatory synaptic transmission in the spinal ventral horn of the rat. Front. Neural Circuits 11, 55–55 (2017).
pubmed: 28848403 pmcid: 5550698 doi: 10.3389/fncir.2017.00055
Geiger, J. G., LaBella, F. S. & Nagy, J. I. Characterization and localization of adenosine receptors in rat spinal cord. J. Neurosci. 4, 2303–2310 (1984).
pubmed: 6090615 pmcid: 6564794 doi: 10.1523/JNEUROSCI.04-09-02303.1984
Johansson, B. et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A
pubmed: 11470917 pmcid: 55434 doi: 10.1073/pnas.161292398
Liang, Y. L. et al. Dominant negative G proteins enhance formation and purification of agonist–GPCR–G protein complexes for structure determination. ACS Pharmacol. Transl. Sci. 1, 12–20 (2018).
pubmed: 32219201 pmcid: 7089020 doi: 10.1021/acsptsci.8b00017
Draper-Joyce, C. J. et al. Structure of the adenosine-bound human adenosine A
pubmed: 29925945 doi: 10.1038/s41586-018-0236-6
Leach, K. et al. Molecular mechanisms of action and in vivo validation of an M4 muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology 35, 855–869 (2010).
pubmed: 19940843 doi: 10.1038/npp.2009.194
Zhang, D. et al. Two disparate ligand-binding sites in the human P2Y
pubmed: 25822790 pmcid: 4408927 doi: 10.1038/nature14287
Cheng, R. K. et al. Structural insight into allosteric modulation of protease-activated receptor 2. Nature 545, 112–115 (2017).
pubmed: 28445455 doi: 10.1038/nature22309
Robertson, N. et al. Structure of the complement C5a receptor bound to the extra-helical antagonist NDT9513727. Nature 553, 111–114 (2018).
pubmed: 29300009 doi: 10.1038/nature25025
Shao, Z. et al. Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat. Chem. Biol. 15, 1199–1205 (2019).
pubmed: 31659318 doi: 10.1038/s41589-019-0387-2
Lu, J. et al. Structural basis for the cooperative allosteric activation of the free fatty acid receptor GPR40. Nat. Struct. Mol. Biol. 24, 570–577 (2017).
pubmed: 28581512 doi: 10.1038/nsmb.3417
Liu, X. et al. Mechanism of β
pubmed: 31249059 pmcid: 6705129 doi: 10.1126/science.aaw8981
Zhuang, Y. et al. Mechanism of dopamine binding and allosteric modulation of the human D1 dopamine receptor. Cell Res. 31, 593–596 (2021).
pubmed: 33750903 pmcid: 8089099 doi: 10.1038/s41422-021-00482-0
DeVree, B. T. et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature 535, 182–186 (2016).
pubmed: 27362234 pmcid: 5702553 doi: 10.1038/nature18324
Seltzer, Z., Dubner, R. & Shir, Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43, 205–218 (1990).
pubmed: 1982347 doi: 10.1016/0304-3959(90)91074-S
Imlach, W. L. et al. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain. Sci. Rep.6, 37104 (2016).
pubmed: 27841371 pmcid: 5107903 doi: 10.1038/srep37104
Bonin, R. P., Bories, C. & De Koninck, Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol. Pain 10, 10–26 (2014).
doi: 10.1186/1744-8069-10-26
Størkson, R. V. et al. Lumbar catheterization of the spinal subarachnoid space in the rat. J. Neurosci. Methods 65, 167–172 (1996).
pubmed: 8740594 doi: 10.1016/0165-0270(95)00164-6
King, T. et al. Unmasking the tonic-aversive state in neuropathic pain. Nat. Neurosci. 12, 1364–1366 (2009).
pubmed: 19783992 pmcid: 3427725 doi: 10.1038/nn.2407
Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci.18, 145–153 (2015).
pubmed: 25420068 doi: 10.1038/nn.3881
Schorb, M. et al. Software tools for automated transmission electron microscopy. Nat. Methods 16, 471–477 (2019).
pubmed: 31086343 pmcid: 7000238 doi: 10.1038/s41592-019-0396-9
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol.193, 1–12 (2016).
pubmed: 26592709 pmcid: 4711343 doi: 10.1016/j.jsb.2015.11.003
Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein complexes. Nat. Commun. 9, 3712 (2018).
pubmed: 30213947 pmcid: 6137068 doi: 10.1038/s41467-018-06002-w
Emsley, P. et al. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).
pubmed: 20057044 doi: 10.1107/S0907444909042073
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Baltos, J. A. et al. Quantification of adenosine A
pubmed: 26581123 doi: 10.1016/j.bcp.2015.11.013
Nguyen, A. T. et al. Extracellular loop 2 of the adenosine A
pubmed: 27683014 doi: 10.1124/mol.116.105007
Morris, G. M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).
pubmed: 19399780 pmcid: 2760638 doi: 10.1002/jcc.21256
Dror, R. O. et al. Structural basis for nucleotide exchange in heterotrimeric G proteins. Science 348, 1361–1365 (2015).
pubmed: 26089515 pmcid: 4968074 doi: 10.1126/science.aaa5264
Dror, R. O. et al. Activation mechanism of the β
pubmed: 22031696 pmcid: 3219117 doi: 10.1073/pnas.1110499108
Wang, J. & Miao, Y. Mechanistic insights into specific G protein interactions with adenosine receptors. J. Phys. Chem. B 123, 6462–6473 (2019).
pubmed: 31283874 pmcid: 7026936 doi: 10.1021/acs.jpcb.9b04867
Humphrey, W., Dalke, A. & Schulten, K. VMD: xisual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).
pubmed: 8744570 doi: 10.1016/0263-7855(96)00018-5
Vanommeslaeghe, K. & MacKerell, A. D. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim. Biophys. Acta 1850, 861–871 (2015).
pubmed: 25149274 doi: 10.1016/j.bbagen.2014.08.004
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2016).
pubmed: 27819658 pmcid: 5199616 doi: 10.1038/nmeth.4067
Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).
pubmed: 20496934 pmcid: 2922408 doi: 10.1021/jp101759q
Vanommeslaeghe, K. & MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 52, 3144–3154 (2012).
pubmed: 23146088 pmcid: 3528824 doi: 10.1021/ci300363c
Vanommeslaeghe, K., Raman, E. P. & MacKerell, A. D. Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J. Chem. Inf. Model. 52, 3155–3168 (2012).
pubmed: 23145473 pmcid: 3528813 doi: 10.1021/ci3003649
Miao, Y. & McCammon, J. A. Graded activation and free energy landscapes of a muscarinic G-protein–coupled receptor. Proc. Natl Acad. Sci. USA 113, 12162–12167 (2016).
pubmed: 27791003 pmcid: 5087018 doi: 10.1073/pnas.1614538113
Miao, Y. & McCammon, J. A. Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proc. Natl Acad. Sci. USA 115, 3036–3041 (2018).
pubmed: 29507218 pmcid: 5866610 doi: 10.1073/pnas.1800756115
Phillips, J. C. et al. Scalable molecular dynamics with NAMD. J. Comput. Chem. 26, 1781–1802 (2005).
pubmed: 16222654 pmcid: 2486339 doi: 10.1002/jcc.20289
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys., 98, 10089 (1993).
doi: 10.1063/1.464397
Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341 (1977).
doi: 10.1016/0021-9991(77)90098-5
Bernstein, N. et al. QM/MM simulation of liquid water with an adaptive quantum region. Phys. Chem. Chem. Phys. 14, 646–656 (2012).
pubmed: 22089416 doi: 10.1039/C1CP22600B
Roe, D. R. & Cheatham, T. E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).
pubmed: 26583988 doi: 10.1021/ct400341p
Whorton, M. R. et al. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc. Natl Acad. Sci. USA 104, 7682–7687 (2007).
pubmed: 17452637 pmcid: 1863461 doi: 10.1073/pnas.0611448104

Auteurs

Christopher J Draper-Joyce (CJ)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.

Rebecca Bhola (R)

Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Jinan Wang (J)

Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.

Apurba Bhattarai (A)

Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.

Anh T N Nguyen (ATN)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

India Cowie-Kent (I)

Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Kelly O'Sullivan (K)

Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Ling Yeong Chia (LY)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Hariprasad Venugopal (H)

Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.

Celine Valant (C)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

David M Thal (DM)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Denise Wootten (D)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Nicolas Panel (N)

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

Jens Carlsson (J)

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

Macdonald J Christie (MJ)

Discipline of Pharmacology, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia.

Paul J White (PJ)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Peter Scammells (P)

Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Lauren T May (LT)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Patrick M Sexton (PM)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.

Radostin Danev (R)

Graduate School of Medicine, University of Tokyo, Tokyo, Japan.

Yinglong Miao (Y)

Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA.

Alisa Glukhova (A)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia. glukhova.a@wehi.edu.au.
Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia. glukhova.a@wehi.edu.au.
Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia. glukhova.a@wehi.edu.au.

Wendy L Imlach (WL)

Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia. wendy.imlach@monash.edu.

Arthur Christopoulos (A)

Drug Discovery Biology and Department of Pharmacology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia. arthur.christopoulos@monash.edu.
ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia. arthur.christopoulos@monash.edu.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH