Biochar-Enhanced Resistance to
RNA sequencing
biochar
metabarcoding
microbiome
plant defense
strawberry
Journal
Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200
Informations de publication
Date de publication:
2021
2021
Historique:
received:
26
04
2021
accepted:
26
07
2021
entrez:
9
9
2021
pubmed:
10
9
2021
medline:
10
9
2021
Statut:
epublish
Résumé
Biochar has been reported to play a positive role in disease suppression against airborne pathogens in plants. The mechanisms behind this positive trait are not well-understood. In this study, we hypothesized that the attraction of plant growth-promoting rhizobacteria (PGPR) or fungi (PGPF) underlies the mechanism of biochar in plant protection. The attraction of PGPR and PGPF may either activate the innate immune system of plants or help the plants with nutrient uptake. We studied the effect of biochar in peat substrate (PS) on the susceptibility of strawberry, both on leaves and fruits, against the airborne fungal pathogen
Identifiants
pubmed: 34497619
doi: 10.3389/fpls.2021.700479
pmc: PMC8419269
doi:
Types de publication
Journal Article
Langues
eng
Pagination
700479Informations de copyright
Copyright © 2021 De Tender, Vandecasteele, Verstraeten, Ommeslag, Kyndt and Debode.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Environ Microbiol. 2005 Nov;7(11):1847-52
pubmed: 16232299
DNA Res. 2014;21(2):169-81
pubmed: 24282021
Mol Plant Microbe Interact. 2021 Mar;34(3):227-239
pubmed: 33135964
Sci Rep. 2017 Mar 13;7:44382
pubmed: 28287177
Nat Methods. 2016 Jul;13(7):581-3
pubmed: 27214047
FEMS Microbiol Rev. 2013 Sep;37(5):634-63
pubmed: 23790204
Annu Rev Phytopathol. 2009;47:177-206
pubmed: 19400653
Metabolomics. 2019 Mar 15;15(4):46
pubmed: 30874962
Sci Rep. 2019 Jul 9;9(1):9890
pubmed: 31289280
Plant Pathol J. 2013 Jun;29(2):136-43
pubmed: 25288940
New Phytol. 2018 Jul;219(1):363-377
pubmed: 29417582
J Exp Bot. 2021 Jan 20;72(1):57-69
pubmed: 32995888
Front Plant Sci. 2019 May 09;10:587
pubmed: 31143198
Nat Rev Microbiol. 2013 Nov;11(11):789-99
pubmed: 24056930
Front Microbiol. 2020 Apr 29;11:799
pubmed: 32411119
PLoS Comput Biol. 2013;9(8):e1003118
pubmed: 23950696
BMC Plant Biol. 2015 Nov 04;15:267
pubmed: 26537003
Annu Rev Phytopathol. 2014;52:347-75
pubmed: 24906124
Phytopathology. 2010 Sep;100(9):913-21
pubmed: 20701489
Int J Syst Evol Microbiol. 2010 Oct;60(Pt 10):2451-2457
pubmed: 19946048
PLoS One. 2011;6(7):e21800
pubmed: 21789182
Front Plant Sci. 2018 Feb 21;9:213
pubmed: 29515613
Bioinformatics. 2010 Jan 1;26(1):139-40
pubmed: 19910308
Plant Cell. 2012 Sep;24(9):3530-57
pubmed: 23023172
Front Plant Sci. 2017 Apr 24;8:623
pubmed: 28484483
Front Plant Sci. 2019 Sep 18;10:1131
pubmed: 31620156
Sci Rep. 2020 Aug 18;10(1):13934
pubmed: 32811849
J Agric Food Chem. 2016 Jul 27;64(29):5855-65
pubmed: 27368357
BMC Genomics. 2020 Oct 22;21(1):733
pubmed: 33092529
Mol Plant Microbe Interact. 2019 Jan;32(1):6-19
pubmed: 30299213
Bioinformatics. 2013 Jan 1;29(1):15-21
pubmed: 23104886
Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86
pubmed: 22110026
Annu Rev Plant Biol. 2013;64:807-38
pubmed: 23373698
Chemosphere. 2020 May;246:125835
pubmed: 31927385
Trends Plant Sci. 2021 Jul;26(7):685-691
pubmed: 33531282
Annu Rev Phytopathol. 1997;35:235-70
pubmed: 15012523
Plant Dis. 1999 Apr;83(4):356-360
pubmed: 30845587
Annu Rev Phytopathol. 2004;42:243-70
pubmed: 15283667
Nature. 2012 Aug 2;488(7409):86-90
pubmed: 22859206
New Phytol. 2017 Feb;213(3):1393-1404
pubmed: 27780299
Front Microbiol. 2016 Dec 22;7:2062
pubmed: 28066380
Fungal Biol. 2016 Apr;120(4):645-653
pubmed: 27020163