Extracellular Vesicles From Sporothrix brasiliensis Yeast Cells Increases Fungicidal Activity in Macrophages.

Extracellular vesicles Fungicidal activity J774 macrophages Sporothrix brasiliensis

Journal

Mycopathologia
ISSN: 1573-0832
Titre abrégé: Mycopathologia
Pays: Netherlands
ID NLM: 7505689

Informations de publication

Date de publication:
Dec 2021
Historique:
received: 17 11 2020
accepted: 10 08 2021
pubmed: 10 9 2021
medline: 23 11 2021
entrez: 9 9 2021
Statut: ppublish

Résumé

Sporotrichosis is a subcutaneous mycosis and is distributed throughout the world, although most cases belong to endemic regions with a warmer climate such as tropical and subtropical areas. The infection occurs mainly by traumatic inoculation of propagules. Similarly, to other organisms, Sporothrix brasiliensis display many biological features that aid in its ability to infect the host, such as extracellular vesicles, bilayered biological structures that provides communication between host cells and between fungi cells themselves. Recently, research on Sporothrix complex have been focused on finding new molecules and components with potential for therapeutic approaches. Here, we study the relationship among EVs and the host's macrophages as well as their role during infection to assess whether these vesicles are helping the fungi or inducing a protective effect on mice during the infection. We found that after cocultivation with different concentrations of purified yeasts EVs from Sb, J774 macrophages displayed an increased fungicidal activity (Phagocytic Index) resulting in lower colony-forming units the more EVs were added, without jeopardizing the viability of the macrophages. Interleukins IL-6, IL-10, and IL-12 were measured during the infection period, showing elevated levels of IL-12 and IL-6 in a dose-dependent manner, but no significant change for IL-10. We also assessed the expression of important molecules in the immune response, such as MHC class II and the immunoglobulin CD86. Both these molecules were overexpressed in Sb yeasts infected mice. Our results indicate that EVs play a protective role during Sporothrix brasiliensis infections.

Identifiants

pubmed: 34498138
doi: 10.1007/s11046-021-00585-7
pii: 10.1007/s11046-021-00585-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

807-818

Subventions

Organisme : Fundação de Amparo à Pesquisa do Estado de São Paulo
ID : 2017/26665-0

Informations de copyright

© 2021. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Marimon R, Cano J, Gene J, Sutton DA, Kawasaki M, Guarro J. Sporothrix brasiliensis, S. globosa, and S. mexicana, three new Sporothrix species of clinical interest. J Clin Microbiol. 2007; 45:3198–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17687013
López-Romero E, Reyes-Montes M del R, Pérez-Torres A, Ruiz-Baca E, Villagómez-Castro JC, Mora-Montes HM, et al. Sporothrix schenckii complex and sporotrichosis, an emerging health problem. Future Microbiol. 2011; 6:85–102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21162638
Rodrigues AM, de Hoog GS, de Camargo ZP. Sporothrix Species Causing Outbreaks in Animals and Humans Driven by Animal–Animal Transmission. Hogan DA, editor. PLOS Pathog. 2016; 12:e1005638. Available from: https://doi.org/10.1371/journal.ppat.1005638
Orofino-Costa R, Macedo PM de, Rodrigues AM, Bernardes-Engemann AR, Orofino-Costa R, Macedo PM de, et al. Sporotrichosis: an update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An Bras Dermatol. 2017; 92:606–20. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0365-05962017000500606&lng=en&tlng=en
Arrillaga-Moncrieff I, Capilla J, Mayayo E, Marimon R, Marine M, Genis J, et al. Different virulence levels of the species of Sporothrix in a murine model. Clin Microbiol Infect. 2009;15:651–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19624508
Boechat JS, Oliveira MME, Almeida-Paes R, Gremião IDF, Machado AC de S, Oliveira R de VC, et al. Feline sporotrichosis: Associations between clinical-epidemiological profiles and phenotypic-genotypic characteristics of the etiological agents in the Rio de Janeiro epizootic area. Mem Inst Oswaldo Cruz. 2018; 113:185–96. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762018000300185&lng=en&nrm=iso&tlng=en
Conti Diaz IA. Epidemiology of sporotrichosis in Latin America. Mycopathologia. 1989;108:113–6.
doi: 10.1007/BF00436061
Chakrabarti A, Bonifaz A, Gutierrez-Galhardo MC, Mochizuki T, Li S. Global epidemiology of sporotrichosis. Med Mycol. 2015; 53:3–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25526781
de Lima Barros MB, de Almeida Paes R, Schubach AO. Sporothrix schenckii and sporotrichosis. Clin Microbiol Rev. 2011; pp 354–633. https://doi.org/10.1128/CMR.00007-11
Schubach A, Schubach TMP, De Lima Barros MB, Wanke B. Cat-transmitted sporotrichosis, Rio de Janeiro, Brazil. Emerg Infect Dis. 2005; 11:1952–4. https://doi.org/10.3201/eid1112.040891 .
doi: 10.3201/eid1112.040891 pubmed: 16485488 pmcid: 3367617
Fernandes GF, dos Santos PO, Rodrigues AM, Sasaki AA, Burger E, de Camargo ZP. Characterization of virulence profile, protein secretion and immunogenicity of different Sporothrix schenckii sensu stricto isolates compared with S. globosa and S. brasiliensis species. Virulence. 2013; 4:241–9. https://doi.org/10.4161/viru.23112
doi: 10.4161/viru.23112 pubmed: 23324498 pmcid: 3711982
Sanchotene KO, Madrid IM, Klafke GB, Bergamashi M, Terra PPD, Rodrigues AM, et al. Sporothrix brasiliensis outbreaks and the rapid emergence of feline sporotrichosis. Mycoses. 2015; 58:652–8. https://doi.org/10.1111/myc.12414
doi: 10.1111/myc.12414 pubmed: 26404561
Lopes-Bezerra LM, Walker LA, Niño-Vega G, Mora-Montes HM, Neves GWP, Villalobos-Duno H, et al. Cell walls of the dimorphic fungal pathogens Sporothrix schenckii and Sporothrix brasiliensis exhibit bilaminate structures and sloughing of extensive and intact layers. Reynolds TB, editor. PLoS Negl Trop Dis. 2018; 12:e0006169. https://doi.org/10.1371/journal.pntd.0006169
Barros MBL, Schubach AO, Schubach TMP, Wanke B, Lambert-Passos SR. An epidemic of sporotrichosis in Rio de Janeiro, Brazil: Epidemiological aspects of a series of cases. Epidemiol Infect. 2008; 136:1192–6. https://doi.org/10.1017/S0950268807009727
doi: 10.1017/S0950268807009727 pubmed: 18028580
Orofino-Costa R, Rodrigues AM, de Macedo PM, Bernardes-Engemann AR. Sporotrichosis: An update on epidemiology, etiopathogenesis, laboratory and clinical therapeutics. An Bras Dermatol. 2017; 92:606–20. https://doi.org/10.1590/abd1806-4841.2017279
doi: 10.1590/abd1806-4841.2017279
Bonifaz A, Tirado-Sánchez A. Cutaneous disseminated and extracutaneous sporotrichosis: Current status of a complex disease. J Fungi. 2017. https://doi.org/10.3390/jof3010006 .
Guo K, Wang S, Wang Z, Zhang L. Effective treatment using itraconazole combined with terbinafine in the treatment of nasal sporotrichosis: A case report. Med (United States). 2019;98. https://doi.org/10.1097/MD.0000000000017155
Vettorato R, Heidrich D, Fraga F, Ribeiro AC, Pagani DM, Timotheo C, et al. Sporotrichosis by Sporothrix schenckii senso stricto with itraconazole resistance and terbinafine sensitivity observed in vitro and in vivo: Case report. Med Mycol Case Rep. 2018; 19:18–20.
Yamasaki S, Matsumoto M, Takeuchi O, Matsuzawa T, Ishikawa E, Sakuma M, et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc Natl Acad Sci U S A. 2009; 106:1897–902. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19171887
Barreto-Bergter E, Figueiredo RT. Fungal glycans and the innate immune recognition [Internet]. Front. Cell Infect Microbiol. 2014; 145. Available from: www.frontiersin.org
Sassá MF, Ferreira LS, de Abreu Ribeiro LC, Carlos IZ. Immune response against Sporothrix schenckii in TLR-4-deficient mice. Mycopathologia. 2012; 174:21–30. Available from: https://pubmed.ncbi.nlm.nih.gov/22286932/
Negrini TDC, Ferreira LS, Alegranci P, Arthur RA, Sundfeld PP, Maia DCG, et al. Role of TLR-2 and fungal surface antigens on innate immune response against Sporothrix schenckii. Immunol Invest. 2013;42:36–48.
doi: 10.3109/08820139.2012.719982
Rossato L, Dos Santos SS, Ferreira LG, De Almeida SRR. The importance of toll-like receptor 4 during experimental sporothrix brasiliensis infection. Med Mycol. 2019; 57:489–95. https://pubmed.ncbi.nlm.nih.gov/30085101/
Rossato L, Silvana dos Santos S, Ferreira LG, Rogério de Almeida S. The impact of the absence of Toll-like receptor-2 during Sporothrix brasiliensis infection. J Med Microbiol. 2019; 68:87–94. http://www.ncbi.nlm.nih.gov/pubmed/30451650
Carlos IZ, Sgarbi DBG, Santos GC, Placeres MCP. Sporothrix schenckii lipid inhibits macrophage phagocytosis: Involvement of nitric oxide and tumour necrosis factor-alpha. Scand J Immunol. 2003; 57:214–20. https://doi.org/10.1046/j.1365-3083.2003.01175.x
doi: 10.1046/j.1365-3083.2003.01175.x
Maia DCG, Gonçalves AC, Ferreira LS, Manente FA, Portuondo DL, Vellosa JCR, et al. Response of cytokines and hydrogen peroxide to Sporothrix schenckii Exoantigen in systemic experimental infection. Mycopathologia. 2016; 181:207–15. https://pubmed.ncbi.nlm.nih.gov/26603044/
Jiao Q, Luo Y, Scheffel J, Geng P, Wang Y, Frischbutter S, et al. Skin mast cells contribute to Sporothrix schenckii infection. Front Immunol. 2020; 11:469. https://doi.org/10.3389/fimmu.2020.00469/full
Luo S, Blom AM, Rupp S, Hipler UC, Hube B, Skerka C, et al. The pH-regulated antigen 1 of Candida albicans binds the human complement inhibitor C4b-binding protein and mediates fungal complement evasion. J Biol Chem. 2011; 286:8021–9.
doi: 10.1074/jbc.M110.130138
Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O. Nontoxigenic protein A vaccine for methicillin-resistant staphylococcus aureus infections in mice. J Exp Med. 2010; 207:1863–70.
doi: 10.1084/jem.20092514
Portuondo DL, Dores-Silva PR, Ferreira LS, de Oliveira CS, Téllez-Martínez D, Marcos CM, et al. Immunization with recombinant enolase of Sporothrix spp. (rSsEno) confers effective protection against sporotrichosis in mice. Sci Rep. 2019; 9:1–14. www.nature.com/scientificreports
García-Lozano A, Toriello C, Antonio-Herrera L, Bonifaz LC. Sporothrix schenckii Immunization, but not infection, induces protective Th17 Responses mediated by circulating memory CD4+ T Cells. Front Microbiol. 2018; 9:1275. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29946313
Ikeda MAK, de Almeida JRF, Jannuzzi GP, Cronemberger-Andrade A, Torrecilhas ACT, Moretti NS, et al. Extracellular vesicles from Sporothrix brasiliensis are an important virulence factor that induce an increase in fungal burden in experimental Sporotrichosis. Front Microbiol. 2018; 9:2286. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30333803
Freitas D, Balmaña M, Poças J, Campos D, Osório H, Konstantinidi A, et al. Different isolation approaches lead to diverse glycosylated extracellular vesicle populations. J Extracell Vesicles. 2019; 8.
Yoon YJ, Kim OY, Gho YS. Extracellular vesicles as emerging intercellular communicasomes. BMB Rep. The Biochemical Society of the Republic of Korea; 2014; pp 531–9.
Deatheragea BL, Cooksona BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infect Immun. 2012; 1948–57.
Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol. 2015; 13:620–30. http://www.ncbi.nlm.nih.gov/pubmed/26324094
Cruz L, Romero JAA, Iglesia RP, Lopes MH. Extracellular vesicles: Decoding a new language for cellular communication in early embryonic development. Front Cell Dev Biol. 2018; 6:94. https://doi.org/10.3389/fcell.2018.00094/full
Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, et al. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 2007; 6:48–59. https://pubmed.ncbi.nlm.nih.gov/17114598/
Da Silva TA, Roque-Barreira MC, Casadevall A, Almeida F. Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci Rep. 2016; 6:1–10. www.nature.com/scientificreports
Brauer VS, Pessoni AM, Bitencourt TA, De Paula RG, De L, Rocha O, et al. Extracellular Vesicles from Aspergillus flavus Induce M1 Polarization In Vitro, 2020. http://msphere.asm.org/
Martínez-López R, Luisa Hernáez Δ M, Redondo E, Calvo G, Radau γ S, Gil C, et al. Small extracellular vesicles secreted by Candida albicans hyphae have highly diverse protein cargoes that include virulence factors and stimulate macrophages. bioRxiv. Cold Spring Harbor Laboratory; 2020, https://doi.org/10.1101/2020.10.02.323774
Vargas G, Honorato L, Guimarães AJ, Rodrigues ML, Reis FCG, Vale AM, et al. Protective effect of fungal extracellular vesicles against murine candidiasis. Cell Microbiol. 2020;22: e13238. https://doi.org/10.1111/cmi.13238 .
doi: 10.1111/cmi.13238 pubmed: 32558196 pmcid: 7499402
Schorey JS, Cheng Y, Singh PP, Smith VL. Exosomes and other extracellular vesicles in host–pathogen interactions. EMBO Rep. 2015; 16:24–43. https://pubmed.ncbi.nlm.nih.gov/25488940/
Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I. Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun. Am Soc Microbiol. (ASM). 2004; 72:4127–37.
Joffe LS, Nimrichter L, Rodrigues ML, Del Poeta M. Potential roles of fungal extracellular vesicles during infection. mSphere. Am Soc Microbiol. 2016;1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27390779
Vargas G, Rocha JDB, Oliveira DL, Albuquerque PC, Frases S, Santos SS, et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol. 2015; 17:389–407. https://doi.org/10.1111/cmi.12374
doi: 10.1111/cmi.12374
Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015; 4:27066. http://www.ncbi.nlm.nih.gov/pubmed/25979354
Devhare PB, Ray RB. A novel role of exosomes in the vaccination approach. Ann Transl Med. 2017. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5253278/
Matos Baltazar L, Nakayasu ES, Sobreira TJP, Choi H, Casadevall A, Nimrichter L, et al. Antibody binding alters the characteristics and contents of extracellular vesicles released by Histoplasma capsulatum. mSphere. Am Soc Microbiol. 2016;1.
Baltazar LM, Zamith-Miranda D, Burnet MC, Choi H, Nimrichter L, Nakayasu ES, et al. Concentration-dependent protein loading of extracellular vesicles released by Histoplasma capsulatum after antibody treatment and its modulatory action upon macrophages. Sci Rep. 2018; 8:1–10. Available from: www.nature.com/scientificreports
Karpman D, Ståhl AL, Arvidsson I. Extracellular vesicles in renal disease. Nat Rev Nephrol. 2017; pp. 545–62. Available from: https://pubmed.ncbi.nlm.nih.gov/28736435/
Johansson HJ, Vallhov H, Holm T, Gehrmann U, Andersson A, Johansson C, et al. Extracellular nanovesicles released from the commensal yeast Malassezia sympodialis are enriched in allergens and interact with cells in human skin. Sci Rep 2018; 8.
Namee NM, O’Driscoll L. Extracellular vesicles and anti-cancer drug resistance. Biochim Biophys Acta Rev Cancer. 2018; pp. 123–36. Available from: https://pubmed.ncbi.nlm.nih.gov/30003999/
Alves LR, Peres da Silva R, Sanchez DA, Zamith-Miranda D, Rodrigues ML, Goldenberg S, et al. Extracellular vesicle-mediated RNA release in Histoplasma capsulatum . mSphere. Am Soc Microbiol; 2019;4. Available from: https://pubmed.ncbi.nlm.nih.gov/30918062/
Forman HJ, Torres M. Redox signaling in macrophages. Mol Aspects Med. 2001; pp. 189–216. Available from: https://pubmed.ncbi.nlm.nih.gov/11679166/
Fang FC, Vazquez-Torres A. Nitric oxide production by human macrophages: There’s NO doubt about it. Am J Physiol Lung Cell Mol Physiol. 2002. Available from: https://pubmed.ncbi.nlm.nih.gov/11943657/
Chaperot L, Chokri M, Jacob MC, Drillat P, Garban F, Egelhofer H, et al. Differentiation of antigen-presenting cells (dendritic cells and macrophages) for therapeutic application in patients with lymphoma. Leukemia. 2000; 14:1667–77. Available from: http://www.nature.com/articles/2401888
Nagl M, Kacani L, Müllauer B, Lemberger EM, Stoiber H, Sprinzl GM, et al. Phagocytosis and killing of bacteria by professional phagocytes and dendritic cells. Clin Diagn Lab Immunol. 2002; 9:1165–8. Available from: https://cvi.asm.org/content/9/6/1165
Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: Emerging targets for cancer therapy. Trends Mol Med. 2014; pp 385–93. Available from: https://pubmed.ncbi.nlm.nih.gov/24703619/
Sabanovic B, Piva F, Cecati M, Giulietti M. Including SARS-CoV-2. 2021.
Urabe F, Kosaka N, Yoshioka Y, Egawa S, Ochiya T. The small vesicular culprits: the investigation of extracellular vesicles as new targets for cancer treatment. Clin Transl Med. 2017;6:45.
doi: 10.1186/s40169-017-0176-z
Shears RK, Bancroft AJ, Hughes GW, Grencis RK, Thornton DJ. Extracellular vesicles induce protective immunity against Trichuris muris. Parasite Immunol. 2018;40: e12536. https://doi.org/10.1111/pim.12536 .
doi: 10.1111/pim.12536 pubmed: 29746004 pmcid: 6055854
Markov O, Oshchepkova A, Mironova N. Immunotherapy based on dendritic cell-targeted/-derived extracellular vesicles—A novel strategy for enhancement of the anti-tumor immune response. Front Pharmacol. 2020;10:1152. Available from: www.frontiersin.org
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, et al. Targeting antigen to the surface of EVs improves the in vivo immunogenicity of human and non-human adenoviral vaccines in mice. Mol Ther Methods Clin Dev. 2020;16:108–25.
doi: 10.1016/j.omtm.2019.12.003
Cho H, Lee WH, Kim YK, Kim K sun. Extracellular vesicle-associated antigens as a new vaccine platform against scrub typhus. Biochem Biophys Res Commun 2020; 523:602–7. Available from: https://pubmed.ncbi.nlm.nih.gov/31941602/
Park KS, Bandeira E, Shelke G V., Lässer C, Lötvall J. Enhancement of therapeutic potential of mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther. 2020; pp 1–15. https://doi.org/10.1186/s13287-019-1398-3

Auteurs

Renato Massis Souza Campos (RMS)

Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil.

Grasielle Pereira Jannuzzi (GP)

Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil. grasi_jannuzzi@hotmail.com.

Marcelo Augusto Kazuo Ikeda (MAK)

Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil.

Sandro Rogério de Almeida (SR)

Department of Clinical and Toxicological Analyses, University of São Paulo, São Paulo, Brazil.

Karen Spadari Ferreira (KS)

Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, Brazil. karenspadari@gmail.com.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH