Learning impurity spectral functions from density of states.

Anderson impurity model deep learning spectral function

Journal

Journal of physics. Condensed matter : an Institute of Physics journal
ISSN: 1361-648X
Titre abrégé: J Phys Condens Matter
Pays: England
ID NLM: 101165248

Informations de publication

Date de publication:
27 Sep 2021
Historique:
received: 07 07 2021
accepted: 09 09 2021
pubmed: 10 9 2021
medline: 10 9 2021
entrez: 9 9 2021
Statut: epublish

Résumé

Using numerical renormalization group calculation, we construct a dataset with 100 K samples, and train six different neural networks for the prediction of spectral functions from density of states (DOS) of the host material. We find that a combination of gated recurrent unit (GRU) network and bidirectional GRU (BiGRU) performances the best among all the six neural networks. The mean absolute error of the GRU + BiGRU network can reach 0.052 and 0.043 when this network is evaluated on the original dataset and two other independent datasets. The average time of spectral function predictions from machine learning is on the scale of 10

Identifiants

pubmed: 34500441
doi: 10.1088/1361-648X/ac2533
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2021 IOP Publishing Ltd.

Auteurs

Xing-Yuan Ren (XY)

Mathematics and Physics Department, North China Electric Power University, Beijing, 102206, People's Republic of China.

Rong-Sheng Han (RS)

Mathematics and Physics Department, North China Electric Power University, Beijing, 102206, People's Republic of China.

Liang Chen (L)

Mathematics and Physics Department, North China Electric Power University, Beijing, 102206, People's Republic of China.

Classifications MeSH