The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
2D nanofluidics
energy generation
graphene oxide
ion transport
osmotic power
reversed electrodialysis
Journal
Molecules (Basel, Switzerland)
ISSN: 1420-3049
Titre abrégé: Molecules
Pays: Switzerland
ID NLM: 100964009
Informations de publication
Date de publication:
02 Sep 2021
02 Sep 2021
Historique:
received:
04
08
2021
revised:
22
08
2021
accepted:
29
08
2021
entrez:
10
9
2021
pubmed:
11
9
2021
medline:
11
9
2021
Statut:
epublish
Résumé
Salinity gradient energy, as a type of blue energy, is a promising sustainable energy source. Its energy conversion efficiency is significantly determined by the selective membranes. Recently, nanofluidic membrane made by two-dimensional (2D) nanomaterials (e.g., graphene) with densely packed nanochannels has been considered as a high-efficient membrane in the osmotic power generation research field. Herein, the graphene oxide-cellulose acetate (GO-CA) heterogeneous membrane was assembled by combining a porous CA membrane and a layered GO membrane; the combination of 2D nanochannels and 3D porous structures make it show high surface-charge-governed property and excellent ion transport stability, resulting in an efficient osmotic power harvesting. A power density of about 0.13 W/m
Identifiants
pubmed: 34500776
pii: molecules26175343
doi: 10.3390/molecules26175343
pmc: PMC8434357
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Hebei Normal University
ID : L2021B14
Organisme : Vetenskapsrådet
ID : 2017-04456
Organisme : ÅForsk
ID : 21-393
Organisme : Graphene Flagship
ID : FLAG-ERA project PROSPECT-2019-03411
Références
Sci Adv. 2021 May 28;7(22):
pubmed: 34049889
Angew Chem Int Ed Engl. 2018 Jan 22;57(4):1034-1038
pubmed: 29210484
Nat Commun. 2015 Oct 14;6:8616
pubmed: 26465062
Nanoscale. 2017 May 25;9(20):6929-6936
pubmed: 28509924
Nature. 2007 Jul 26;448(7152):457-60
pubmed: 17653188
Nat Chem. 2014 Feb;6(2):151-8
pubmed: 24451592
Science. 2014 Feb 14;343(6172):752-4
pubmed: 24531966
Nat Commun. 2019 Mar 12;10(1):1171
pubmed: 30862778
Nat Mater. 2020 Jul;19(7):767-774
pubmed: 32152561
Nature. 2017 Oct 19;550(7676):380-383
pubmed: 28992630
ACS Appl Mater Interfaces. 2019 Jan 23;11(3):3087-3097
pubmed: 30586280
Science. 2012 Mar 23;335(6075):1474-7
pubmed: 22383807
Adv Mater. 2021 Apr;33(14):e2007529
pubmed: 33656226
ACS Nano. 2021 Apr 27;15(4):7586-7595
pubmed: 33821627
Adv Mater. 2020 Apr;32(16):e1903954
pubmed: 32115802
Environ Sci Technol. 2008 Aug 1;42(15):5785-90
pubmed: 18754509
Science. 2016 Mar 25;351(6280):1395-6
pubmed: 27013715
Adv Mater. 2013 Nov 13;25(42):6064-8
pubmed: 23900945
Angew Chem Int Ed Engl. 2020 May 25;59(22):8720-8726
pubmed: 31950586
Sci Adv. 2018 Oct 26;4(10):eaau1665
pubmed: 30397649
Adv Mater. 2017 Jun;29(23):
pubmed: 28397411
ACS Nano. 2019 Aug 27;13(8):8917-8925
pubmed: 31305989
Nature. 2012 Aug 16;488(7411):313-9
pubmed: 22895336
Small. 2021 Apr;17(17):e2007242
pubmed: 33719216
Nature. 2013 Feb 28;494(7438):455-8
pubmed: 23446417
Small. 2019 Dec;15(50):e1905355
pubmed: 31714020
Nanotechnology. 2013 Aug 30;24(34):345401
pubmed: 23899953
Nature. 2016 Aug 11;536(7615):197-200
pubmed: 27409806
Chem Soc Rev. 2013 Aug 21;42(16):6959-89
pubmed: 23778699
Nat Mater. 2007 Jun;6(6):424-8
pubmed: 17486084
Acc Chem Res. 2013 Dec 17;46(12):2834-46
pubmed: 23713693
Chem Soc Rev. 2017 Aug 29;46(17):5400-5424
pubmed: 28722059
Nanoscale. 2018 Dec 7;10(45):21386-21395
pubmed: 30427042
J Am Chem Soc. 2012 Oct 10;134(40):16528-31
pubmed: 22998077
Science. 2013 Aug 2;341(6145):534-7
pubmed: 23908233
J Am Chem Soc. 2014 Sep 3;136(35):12265-72
pubmed: 25137214