Antibacterial and Cellular Behaviors of Novel Zinc-Doped Hydroxyapatite/Graphene Nanocomposite for Bone Tissue Engineering.
Animals
Anti-Bacterial Agents
/ chemistry
Bone Marrow Cells
/ metabolism
Bone and Bones
/ metabolism
Durapatite
/ chemistry
Escherichia coli
/ growth & development
Graphite
/ chemistry
Mice
Nanocomposites
/ chemistry
Staphylococcus aureus
/ growth & development
Stem Cells
/ metabolism
Tissue Engineering
Zinc
/ chemistry
antibacterial
biocompatibility
graphene
hydroxyapatite
nanocomposite
zinc
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
03 Sep 2021
03 Sep 2021
Historique:
received:
21
07
2021
revised:
29
08
2021
accepted:
29
08
2021
entrez:
10
9
2021
pubmed:
11
9
2021
medline:
21
10
2021
Statut:
epublish
Résumé
Bacteria are one of the significant causes of infection in the body after scaffold implantation. Effective use of nanotechnology to overcome this problem is an exciting and practical solution. Nanoparticles can cause bacterial degradation by the electrostatic interaction with receptors and cell walls. Simultaneously, the incorporation of antibacterial materials such as zinc and graphene in nanoparticles can further enhance bacterial degradation. In the present study, zinc-doped hydroxyapatite/graphene was synthesized and characterized as a nanocomposite material possessing both antibacterial and bioactive properties for bone tissue engineering. After synthesizing the zinc-doped hydroxyapatite nanoparticles using a mechanochemical process, they were composited with reduced graphene oxide. The nanoparticles and nanocomposite samples were extensively investigated by transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. Their antibacterial behaviors against Escherichia coli and Staphylococcus aureus were studied. The antibacterial properties of hydroxyapatite nanoparticles were found to be improved more than 2.7 and 3.4 times after zinc doping and further compositing with graphene, respectively. In vitro cell assessment was investigated by a cell viability test and alkaline phosphatase activity using mesenchymal stem cells, and the results showed that hydroxyapatite nanoparticles in the culture medium, in addition to non-toxicity, led to enhanced proliferation of bone marrow stem cells. Furthermore, zinc doping in combination with graphene significantly increased alkaline phosphatase activity and proliferation of mesenchymal stem cells. The antibacterial activity along with cell biocompatibility/bioactivity of zinc-doped hydroxyapatite/graphene nanocomposite are the highly desirable and suitable biological properties for bone tissue engineering successfully achieved in this work.
Identifiants
pubmed: 34502473
pii: ijms22179564
doi: 10.3390/ijms22179564
pmc: PMC8431478
pii:
doi:
Substances chimiques
Anti-Bacterial Agents
0
Graphite
7782-42-5
Durapatite
91D9GV0Z28
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Materials (Basel). 2019 Feb 14;12(4):
pubmed: 30769821
Bone Res. 2014 Sep 30;2:14017
pubmed: 26273526
Bone Res. 2016 Apr 26;4:16009
pubmed: 27563484
Mater Sci Eng C Mater Biol Appl. 2021 Feb;119:111656
pubmed: 33321686
Ann Biomed Eng. 2015 Mar;43(3):515-28
pubmed: 25476163
Adv Sci (Weinh). 2018 Jan 28;5(4):1700755
pubmed: 29721422
J Mater Chem B. 2019 Oct 9;7(39):5998-6009
pubmed: 31538158
Materials (Basel). 2020 May 12;13(10):
pubmed: 32408474
Nanomaterials (Basel). 2018 Nov 16;8(11):
pubmed: 30453490
Nanomicro Lett. 2018 Jul;10(3):53
pubmed: 30079344
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2181-6
pubmed: 17277076
Stem Cells Int. 2012;2012:236231
pubmed: 25098363
Onco Targets Ther. 2017 Feb 20;10:711-724
pubmed: 28260916
Tissue Eng Part B Rev. 2017 Jun;23(3):268-280
pubmed: 27846781
J Cell Sci. 2017 May 1;130(9):1612-1624
pubmed: 28302906
Colloids Surf B Biointerfaces. 2019 Sep 1;181:6-15
pubmed: 31103799
ACS Nano. 2011 Sep 27;5(9):6971-80
pubmed: 21851105
Spectrochim Acta A Mol Biomol Spectrosc. 2011 Aug 15;79(4):722-7
pubmed: 20869301
Mol Cells. 2018 Feb 28;41(2):83-92
pubmed: 29429151
J Bone Miner Res. 1995 Mar;10(3):453-7
pubmed: 7785467
Int J Mol Sci. 2021 Mar 11;22(6):
pubmed: 33799644
Nanomaterials (Basel). 2019 Apr 02;9(4):
pubmed: 30986971
Sci Rep. 2017 Apr 20;7:46604
pubmed: 28425470
Biomater Res. 2021 Feb 12;25(1):4
pubmed: 33579390
Adv Biosyst. 2020 Nov;4(11):e2000247
pubmed: 33035411
Bone Res. 2019 Jul 15;7:20
pubmed: 31646012
Mol Nutr Food Res. 2011 Oct;55(10):1552-60
pubmed: 21656670
Bioact Mater. 2018 Feb 03;3(1):1-18
pubmed: 29744438
J Control Release. 2019 Aug 10;307:16-31
pubmed: 31185232
Int J Nanomedicine. 2021 May 24;16:3541-3554
pubmed: 34079247
J Neurochem. 2013 Nov;127(3):303-13
pubmed: 23875811
Stem Cells. 2008 Apr;26(4):960-8
pubmed: 18218821
J Anim Sci Biotechnol. 2019 Jul 9;10:57
pubmed: 31321032
J Inorg Biochem. 2000 Jan 30;78(2):161-5
pubmed: 10766339
Nutrients. 2019 Oct 25;11(11):
pubmed: 31731473
Bioresour Technol. 2011 Jan;102(2):1516-20
pubmed: 20797851
Oncotarget. 2015 Apr 20;6(11):9577-91
pubmed: 25797254
ACS Appl Mater Interfaces. 2017 Apr 12;9(14):12253-12263
pubmed: 28345852
Biomatter. 2012 Oct-Dec;2(4):176-94
pubmed: 23507884
Biomater Sci. 2020 Jun 21;8(12):3286-3300
pubmed: 32490486
Nanoscale. 2018 Mar 8;10(10):4927-4939
pubmed: 29480295
Stem Cells Dev. 2018 Aug 15;27(16):1125-1135
pubmed: 29848179
Stem Cells. 2017 Feb;35(2):411-424
pubmed: 27501743
PLoS One. 2017 Mar 9;12(3):e0173085
pubmed: 28278256
J Biomed Mater Res B Appl Biomater. 2020 Jul;108(5):2119-2130
pubmed: 31886952
Acta Biomater. 2013 Aug;9(8):7591-621
pubmed: 23583646
J Mater Chem B. 2021 Apr 21;9(15):3401-3411
pubmed: 33881445
Indian J Clin Biochem. 2014 Jul;29(3):269-78
pubmed: 24966474
Nat Rev Microbiol. 2018 Jul;16(7):397-409
pubmed: 29720707
Sci Rep. 2017 Jun 13;7(1):3440
pubmed: 28611362
Curr Opin Biomed Eng. 2021 Mar;17:
pubmed: 33718691
Adv Healthc Mater. 2020 Jul;9(13):e2000310
pubmed: 32449317
Oncotarget. 2017 May 16;8(20):32433-32449
pubmed: 28430606
Nanoscale. 2015 Jul 21;7(27):11642-51
pubmed: 26098486