Competitive ELISA for a serologic test to detect dengue serotype-specific anti-NS1 IgGs using high-affinity UB-DNA aptamers.
Antibodies, Viral
/ blood
Antibody Affinity
Antigens, Viral
/ immunology
Aptamers, Nucleotide
/ immunology
Cross Reactions
Dengue
/ blood
Dengue Virus
/ immunology
Enzyme-Linked Immunosorbent Assay
/ methods
Humans
Immunoglobulin G
/ blood
Sensitivity and Specificity
Serogroup
Serologic Tests
/ methods
Viral Nonstructural Proteins
/ immunology
Zika Virus
/ immunology
Zika Virus Infection
/ blood
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 09 2021
09 09 2021
Historique:
received:
16
04
2021
accepted:
24
08
2021
entrez:
10
9
2021
pubmed:
11
9
2021
medline:
18
11
2021
Statut:
epublish
Résumé
Serologic tests to detect specific IgGs to antigens related to viral infections are urgently needed for diagnostics and therapeutics. We present a diagnostic method for serotype-specific IgG identification of dengue infection by a competitive enzyme-linked immunosorbent assay (ELISA), using high-affinity unnatural-base-containing DNA (UB-DNA) aptamers that recognize the four categorized serotypes. Using UB-DNA aptamers specific to each serotype of dengue NS1 proteins (DEN-NS1), we developed our aptamer-antibody sandwich ELISA for dengue diagnostics. Furthermore, IgGs highly specific to DEN-NS1 inhibited the serotype-specific NS1 detection, inspiring us to develop the competitive ELISA format for dengue serotype-specific IgG detection. Blood samples from Singaporean patients with primary or secondary dengue infections confirmed the highly specific IgG detection of this format, and the IgG production initially reflected the serotype of the past infection, rather than the recent infection. Using this dengue competitive ELISA format, cross-reactivity tests of 21 plasma samples from Singaporean Zika virus-infected patients revealed two distinct patterns: 8 lacked cross-reactivity, and 13 were positive with unique dengue serotype specificities, indicating previous dengue infection. This antigen-detection ELISA and antibody-detection competitive ELISA combination using the UB-DNA aptamers identifies both past and current viral infections and will facilitate specific medical care and vaccine development for infectious diseases.
Identifiants
pubmed: 34504185
doi: 10.1038/s41598-021-97339-8
pii: 10.1038/s41598-021-97339-8
pmc: PMC8429655
doi:
Substances chimiques
Antibodies, Viral
0
Antigens, Viral
0
Aptamers, Nucleotide
0
Immunoglobulin G
0
Viral Nonstructural Proteins
0
Types de publication
Evaluation Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
18000Informations de copyright
© 2021. The Author(s).
Références
Maple, P. A. C. & Sikora, K. How useful is COVID-19 antibody testing—A current assessment for oncologists. Clin. Oncol. 33, e73–e81 (2021).
doi: 10.1016/j.clon.2020.10.008
Balestri, R., Magnano, M., Rizzoli, L. & Rech, G. Do we have serological evidences that chilblain-like lesions are related to SARS-CoV-2? A review of the literature. Dermatol Ther 33, e14229 (2020).
pubmed: 32844512
doi: 10.1111/dth.14229
Deeks, J. J. et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database Syst. Rev. 6, CD013652 (2020).
pubmed: 32584464
Espejo, A. P. et al. Review of current advances in serologic testing for COVID-19. Am. J. Clin. Pathol. 154, 293–304 (2020).
pubmed: 32583852
doi: 10.1093/ajcp/aqaa112
Motley, M. P., Bennett-Guerrero, E., Fries, B. C. & Spitzer, E. D. Review of viral testing (polymerase chain reaction) and antibody/serology testing for severe acute respiratory syndrome-coronavirus-2 for the intensivist. Crit. Care Explor. 2, e0154 (2020).
pubmed: 32696013
pmcid: 7314351
doi: 10.1097/CCE.0000000000000154
Goldberg, M. E. & Djavadi-Ohaniance, L. Methods for measurement of antibody/antigen affinity based on ELISA and RIA. Curr. Opin. Immunol. 5, 278–281 (1993).
pubmed: 8507406
doi: 10.1016/0952-7915(93)90018-N
Kozel, T. R. & Burnham-Marusich, A. R. Point-of-care testing for infectious diseases: Past, present, and future. J. Clin. Microbiol. 55, 2313–2320 (2017).
pubmed: 28539345
pmcid: 5527409
doi: 10.1128/JCM.00476-17
Pang, J., Chia, P. Y., Lye, D. C. & Leo, Y. S. Progress and challenges towards point-of-care diagnostic development for dengue. J. Clin. Microbiol. 55, 3339–3349 (2017).
pubmed: 28904181
pmcid: 5703800
doi: 10.1128/JCM.00707-17
Masyeni, S. et al. Serological cross-reaction and coinfection of dengue and COVID-19 in Asia: Experience from Indonesia. Int. J. Infect. Dis. 102, 152–154 (2021).
pubmed: 33115680
doi: 10.1016/j.ijid.2020.10.043
Yan, G. et al. Covert COVID-19 and false-positive dengue serology in Singapore. Lancet Infect. Dis. 20, 536 (2020).
pubmed: 32145189
pmcid: 7128937
doi: 10.1016/S1473-3099(20)30158-4
Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).
pubmed: 23563266
pmcid: 3651993
doi: 10.1038/nature12060
Ang, L. W. et al. A 15-year review of dengue hospitalizations in Singapore: Reducing admissions without adverse consequences, 2003 to 2017. PLoS Negl. Trop. Dis. 13, e0007389 (2019).
pubmed: 31091272
pmcid: 6519799
doi: 10.1371/journal.pntd.0007389
Halstead, S. B. & O’Rourke, E. J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J. Exp. Med. 146, 201–217 (1977).
pubmed: 406347
pmcid: 2180729
doi: 10.1084/jem.146.1.201
Halstead, S. B. & O’Rourke, E. J. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265, 739–741 (1977).
pubmed: 404559
doi: 10.1038/265739a0
Halstead, S. B. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 140, 527–533 (1979).
pubmed: 117061
doi: 10.1093/infdis/140.4.527
Halstead, S. B. Dengue. Lancet 370, 1644–1652 (2007).
pubmed: 17993365
doi: 10.1016/S0140-6736(07)61687-0
Guzman, M. G. & Harris, E. Dengue. Lancet 385, 453–465 (2015).
pubmed: 25230594
doi: 10.1016/S0140-6736(14)60572-9
Guzman, M. G., Gubler, D. J., Izquierdo, A., Martinez, E. & Halstead, S. B. Dengue infection. Nat. Rev. Dis. Primers 2, 16055 (2016).
pubmed: 27534439
doi: 10.1038/nrdp.2016.55
Wilder-Smith, A., Ooi, E. E., Horstick, O. & Wills, B. Dengue. Lancet 393, 350–363 (2019).
pubmed: 30696575
doi: 10.1016/S0140-6736(18)32560-1
Priyamvada, L. et al. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. Proc. Natl. Acad. Sci. U S A 113, 7852–7857 (2016).
pubmed: 27354515
pmcid: 4948328
doi: 10.1073/pnas.1607931113
Mathew, A. et al. B-cell responses during primary and secondary dengue virus infections in humans. J. Infect. Dis. 204, 1514–1522 (2011).
pubmed: 21930609
pmcid: 3222107
doi: 10.1093/infdis/jir607
Corbett, K. S. et al. Preexisting neutralizing antibody responses distinguish clinically inapparent and apparent dengue virus infections in a Sri Lankan pediatric cohort. J. Infect. Dis. 211, 590–599 (2015).
pubmed: 25336728
doi: 10.1093/infdis/jiu481
Priyamvada, L. et al. B cell responses during secondary dengue virus infection are dominated by highly cross-reactive, memory-derived plasmablasts. J. Virol. 90, 5574–5585 (2016).
pubmed: 27030262
pmcid: 4886779
doi: 10.1128/JVI.03203-15
Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).
pubmed: 29097492
pmcid: 5858873
doi: 10.1126/science.aan6836
St. John, A. L. & Rathore, A. P. S. Adaptive immune responses to primary and secondary dengue virus infections. Nat. Rev. Immunol. 19, 218–230 (2019).
pubmed: 30679808
doi: 10.1038/s41577-019-0123-x
Patel, B. et al. Dissecting the human serum antibody response to secondary dengue virus infections. PLoS Negl. Trop. Dis. 11, 0005554 (2017).
doi: 10.1371/journal.pntd.0005554
Reich, N. G. et al. Interactions between serotypes of dengue highlight epidemiological impact of cross-immunity. J. R. Soc. Interface 10, 20130414 (2013).
pubmed: 23825116
pmcid: 3730691
doi: 10.1098/rsif.2013.0414
Villar, L. et al. Efficacy of a tetravalent dengue vaccine in children in Latin America. N. Engl. J. Med. 372, 113–123 (2015).
pubmed: 25365753
doi: 10.1056/NEJMoa1411037
Capeding, M. R. et al. Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia: a phase 3, randomised, observer-masked, placebo-controlled trial. Lancet 384, 1358–1365 (2014).
pubmed: 25018116
doi: 10.1016/S0140-6736(14)61060-6
Ferguson, N. M. et al. Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment. Science 353, 1033–1036 (2016).
pubmed: 27701113
pmcid: 5268127
doi: 10.1126/science.aaf9590
Sridhar, S. et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med. 379, 327–340 (2018).
pubmed: 29897841
doi: 10.1056/NEJMoa1800820
Aguiar, M., Halstead, S. B. & Stollenwerk, N. Consider stopping dengvaxia administration without immunological screening. Exp. Rev. Vaccines 16, 301–302 (2017).
doi: 10.1080/14760584.2017.1276831
Halstead, S. B. Dengvaxia sensitizes seronegatives to vaccine enhanced disease regardless of age. Vaccine 35, 6355–6358 (2017).
pubmed: 29029938
doi: 10.1016/j.vaccine.2017.09.089
Luo, R. et al. Rapid diagnostic tests for determining dengue serostatus: A systematic review and key informant interviews. Clin. Microbiol. Infect. 25, 659–666 (2019).
pubmed: 30664935
pmcid: 6543064
doi: 10.1016/j.cmi.2019.01.002
Muller, D. A., Depelsenaire, A. C. & Young, P. R. Clinical and laboratory diagnosis of dengue virus infection. J. Infect. Dis. 215, S89–S95 (2017).
pubmed: 28403441
doi: 10.1093/infdis/jiw649
Peeling, R. W. et al. Evaluation of diagnostic tests: Dengue. Nat. Rev. Microbiol. 8, S30–S38 (2010).
pubmed: 21548185
doi: 10.1038/nrmicro2459
Lebani, K. et al. Isolation of serotype-specific antibodies against dengue virus non-structural protein 1 using phage display and application in a multiplexed serotyping assay. PLoS ONE 12, e0180669 (2017).
pubmed: 28683141
pmcid: 5500353
doi: 10.1371/journal.pone.0180669
Roltgen, K. et al. Development of dengue virus serotype-specific NS1 capture assays for the rapid and highly sensitive identification of the infecting serotype in human sera. J. Immunol. 200, 3857–3866 (2018).
pubmed: 29661824
doi: 10.4049/jimmunol.1701790
Bosch, I. et al. Serotype-specific detection of dengue viruses in a nonstructural protein 1-based enzyme-linked immunosorbent assay validated with a multi-national cohort. PLoS Negl. Trop. Dis. 14, e0008203 (2020).
pubmed: 32579555
pmcid: 7351204
doi: 10.1371/journal.pntd.0008203
Bosch, I. et al. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci. Transl. Med. 9, eaan1589 (2017).
pubmed: 28954927
pmcid: 6612058
doi: 10.1126/scitranslmed.aan1589
Ng, D. H. L. et al. Fever patterns, cytokine profiles, and outcomes in COVID-19. Open Forum Infect. Dis. 7, ofaa375 (2020).
pubmed: 32999893
pmcid: 7499767
doi: 10.1093/ofid/ofaa375
Stringari, L. L. et al. Covert cases of severe acute respiratory syndrome coronavirus 2: An obscure but present danger in regions endemic for dengue and chikungunya viruses. PLoS ONE 16, e0244937 (2021).
pubmed: 33406122
pmcid: 7787539
doi: 10.1371/journal.pone.0244937
Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).
pubmed: 1697402
doi: 10.1038/346818a0
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).
pubmed: 2200121
doi: 10.1126/science.2200121
Kimoto, M., Yamashige, R., Matsunaga, K., Yokoyama, S. & Hirao, I. Generation of high-affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31, 453–457 (2013).
pubmed: 23563318
doi: 10.1038/nbt.2556
Matsunaga, K., Kimoto, M. & Hirao, I. High-affinity DNA aptamer generation targeting von Willebrand factor A1-domain by genetic alphabet expansion for systematic evolution of ligands by exponential enrichment using two types of libraries composed of five different bases. J. Am. Chem. Soc. 139, 324–334 (2017).
pubmed: 27966933
doi: 10.1021/jacs.6b10767
Hirao, I., Kimoto, M. & Lee, K. H. DNA aptamer generation by ExSELEX using genetic alphabet expansion with a mini-hairpin DNA stabilization method. Biochimie 145, 15–21 (2018).
pubmed: 28916151
doi: 10.1016/j.biochi.2017.09.007
Matsunaga, K. et al. Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications. Sci. Rep. 5, 18478 (2015).
pubmed: 26690672
pmcid: 4686876
doi: 10.1038/srep18478
Matsunaga, K. et al. High-affinity five/six-letter DNA aptamers with superior specificity enabling the detection of dengue NS1 protein variants beyond the serotype identification. Nucleic Acids Res. (in press) https://doi.org/10.1093/nar/gkab515 (2021).
doi: 10.1093/nar/gkab515
Sharma, M. et al. Magnitude and functionality of the NS1-specific antibody response elicited by a live-attenuated tetravalent dengue vaccine candidate. J. Infect. Dis. 221, 867–877 (2019).
pmcid: 7325620
doi: 10.1093/infdis/jiz081
Halstead, S. B., Russell, P. K. & Brandt, W. E. NS1, dengue’s dagger. J. Infect. Dis. 221, 857–860 (2019).
Hirao, I. et al. An unnatural hydrophobic base pair system: Site-specific incorporation of nucleotide analogs into DNA and RNA. Nat. Methods 3, 729–735 (2006).
pubmed: 16929319
doi: 10.1038/nmeth915
Kimoto, M., Soh, S. H. G., Tan, H. P., Okamoto, I. & Hirao, I. Cognate base-pair selectivity of hydrophobic unnatural bases in DNA ligation by T4 DNA ligase. Biopolymers 112, e23407 (2021).
pubmed: 33156531
doi: 10.1002/bip.23407
Hirao, I. et al. Extraordinary stable structure of short single-stranded DNA fragments containing a specific base sequence: d(GCGAAAGC). Nucleic Acids Res. 17, 2223–2231 (1989).
pubmed: 2704619
pmcid: 317592
doi: 10.1093/nar/17.6.2223
Hirao, I. et al. Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: An extraordinarily stable structure resistant to nucleases and heat. Nucleic Acids Res. 22, 576–582 (1994).
pubmed: 8127706
pmcid: 307846
doi: 10.1093/nar/22.4.576
Yoshizawa, S., Kawai, G., Watanabe, K., Miura, K. & Hirao, I. GNA trinucleotide loop sequences producing extraordinarily stable DNA minihairpins. Biochemistry 36, 4761–4767 (1997).
pubmed: 9125496
doi: 10.1021/bi961738p
Kimoto, M., Nakamura, M. & Hirao, I. Post-ExSELEX stabilization of an unnatural-base DNA aptamer targeting VEGF165 toward pharmaceutical applications. Nucleic Acids Res. 44, 7487–7494 (2016).
pubmed: 27387284
pmcid: 5009754
Hamashima, K., Kimoto, M. & Hirao, I. Creation of unnatural base pairs for genetic alphabet expansion toward synthetic xenobiology. Curr. Opin. Chem. Biol. 46, 108–114 (2018).
pubmed: 30059833
doi: 10.1016/j.cbpa.2018.07.017
Kimoto, M., Shermane Lim, Y. W. & Hirao, I. Molecular affinity rulers: Systematic evaluation of DNA aptamers for their applicabilities in ELISA. Nucleic Acids Res. 47, 8362–8374 (2019).
pubmed: 31392985
pmcid: 6895277
doi: 10.1093/nar/gkz688
Chao, D. Y., Galula, J. U., Shen, W. F., Davis, B. S. & Chang, G. J. Nonstructural protein 1-specific immunoglobulin M and G antibody capture enzyme-linked immunosorbent assays in diagnosis of flaviviral infections in humans. J. Clin. Microbiol. 53, 557–566 (2015).
pubmed: 25502522
pmcid: 4298564
doi: 10.1128/JCM.02735-14
Shu, P. Y. et al. Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections. Clin. Diagn. Lab. Immunol. 10, 622–630 (2003).
pubmed: 12853395
pmcid: 164246
Tyson, J. et al. Combination of nonstructural protein 1-based enzyme-linked immunosorbent assays can detect and distinguish various dengue virus and zika virus infections. J. Clin. Microbiol. 57, e01464-e11418 (2019).
pubmed: 30429254
pmcid: 6355536
doi: 10.1128/JCM.01464-18
Raafat, N., Blacksell, S. D. & Maude, R. J. A review of dengue diagnostics and implications for surveillance and control. Trans. R. Soc. Trop. Med. Hyg. 113, 653–660 (2019).
pubmed: 31365115
pmcid: 6836713
doi: 10.1093/trstmh/trz068
Blacksell, S. D. et al. Comparison of seven commercial antigen and antibody enzyme-linked immunosorbent assays for detection of acute dengue infection. Clin. Vaccine Immunol. 19, 804–810 (2012).
pubmed: 22441389
pmcid: 3346317
doi: 10.1128/CVI.05717-11
Azimzadeh, A., Weiss, E. & Van Regenmortel, M. H. Measurement of affinity of viral monoclonal antibodies using Fab’-peroxidase conjugate. Influence of antibody concentration on apparent affinity. Mol Immunol 29, 601–608 (1992).
pubmed: 1584228
doi: 10.1016/0161-5890(92)90196-5
Zhang, L., Li, Z., Jin, H., Hu, X. & Su, J. Development and application of a monoclonal antibody-based blocking ELISA for detection of antibodies to Tembusu virus in multiple poultry species. BMC Vet. Res. 14, 201 (2018).
pubmed: 29940964
pmcid: 6019803
doi: 10.1186/s12917-018-1537-6
Chang, S. F. et al. Retrospective serological study on sequential dengue virus serotypes 1 to 4 epidemics in Tainan City, Taiwan, 1994 to 2000. J. Microbiol. Immunol. Infect. 41, 377–385 (2008).
pubmed: 19122918
Chia, P. Y. et al. Clinical features of patients with Zika and dengue virus co-infection in Singapore. J. Infect. 74, 611–615 (2017).
pubmed: 28344113
doi: 10.1016/j.jinf.2017.03.007
Tsai, W. Y. et al. Distinguishing secondary dengue virus infection from Zika virus infection with previous dengue by a combination of 3 simple serological tests. Clin. Infect. Dis. 65, 1829–1836 (2017).
pubmed: 29020159
pmcid: 5850648
doi: 10.1093/cid/cix672
Gao, X. et al. Delayed and highly specific antibody response to nonstructural protein 1 (NS1) revealed during natural human ZIKV infection by NS1-based capture ELISA. BMC Infect. Dis. 18, 275 (2018).
pubmed: 29898684
pmcid: 6000977
doi: 10.1186/s12879-018-3173-y
Felix, A. C. et al. Cross reactivity of commercial anti-dengue immunoassays in patients with acute Zika virus infection. J. Med. Virol. 89, 1477–1479 (2017).
pubmed: 28229481
doi: 10.1002/jmv.24789
Dejnirattisai, W. et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat. Immunol. 17, 1102–1108 (2016).
pubmed: 27339099
pmcid: 4994874
doi: 10.1038/ni.3515
Fernandez, E. et al. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nat. Immunol. 18, 1261–1269 (2017).
pubmed: 28945244
pmcid: 5679314
doi: 10.1038/ni.3849
Yap, T. L. et al. Engineered NS1 for sensitive, specific zika virus diagnosis from patient serology. Emerg. Infect. Dis. 27, 1427–1437 (2021).
pubmed: 33900180
pmcid: 8084482
doi: 10.3201/eid2705.190121
Chao, D. Y. et al. Comprehensive evaluation of differential serodiagnosis between zika and dengue viral infections. J. Clin. Microbiol. 57, 1056 (2019).
doi: 10.1128/JCM.01506-18
Zaidi, M. B. et al. Serological tests reveal significant cross-reactive human antibody responses to Zika and Dengue viruses in the Mexican population. Acta Trop 201, 105201 (2020).
pubmed: 31562846
doi: 10.1016/j.actatropica.2019.105201
Fu, P. et al. Enzyme linked aptamer assay: Based on a competition format for sensitive detection of antibodies to Mycoplasma bovis in serum. Anal Chem 86, 1701–1709 (2014).
pubmed: 24417693
doi: 10.1021/ac4042203
Zumrut, H. E. et al. Ligand-guided selection of aptamers against T-cell receptor-cluster of differentiation 3 (TCR-CD3) expressed on Jurkat.E6 cells. Anal. Biochem. 512, 1–7 (2016).
pubmed: 27519622
pmcid: 5593316
doi: 10.1016/j.ab.2016.08.007
Zumrut, H. E. & Mallikaratchy, P. R. Ligand guided selection (LIGS) of artificial nucleic acid ligands against cell surface targets. ACS Appl. Bio Mater. 3, 2545–2552 (2020).
pubmed: 34013167
doi: 10.1021/acsabm.9b00938
Tan, C. W. et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol. 38, 1073–1078 (2020).
pubmed: 32704169
doi: 10.1038/s41587-020-0631-z
Byrnes, J.R. et al. A SARS-CoV-2 serological assay to determine the presence of blocking antibodies that compete for human ACE2 binding. medRxiv (2020) (in press).