Pharmacological characterization of mutant huntingtin aggregate-directed PET imaging tracer candidates.
Alzheimer Disease
/ metabolism
Animals
Autoradiography
/ methods
Brain
/ metabolism
Disease Models, Animal
Humans
Huntingtin Protein
/ genetics
Huntington Disease
/ metabolism
Immunohistochemistry
/ methods
Mice
Mice, Transgenic
Nitrogen Radioisotopes
/ metabolism
Positron-Emission Tomography
/ methods
Protein Aggregates
/ genetics
Protein Aggregation, Pathological
/ diagnostic imaging
Radioactive Tracers
Radioligand Assay
/ methods
Radiopharmaceuticals
/ metabolism
Recombinant Proteins
/ metabolism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
09 09 2021
09 09 2021
Historique:
received:
18
06
2021
accepted:
24
08
2021
entrez:
10
9
2021
pubmed:
11
9
2021
medline:
18
11
2021
Statut:
epublish
Résumé
Huntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents. We recently reported the development of PET tracers CHDI-180 and CHDI-626 as suitable for imaging mHTT aggregates, and here we present an in-depth pharmacological investigation of their binding characteristics. We have implemented an array of in vitro and ex vivo radiometric binding assays using recombinant HTT, brain homogenate-derived HTT aggregates, and brain sections from mouse HD models and humans post-mortem to investigate binding affinities and selectivity against other pathological proteins from indications such as Alzheimer's disease and spinocerebellar ataxia 1. Radioligand binding assays and autoradiography studies using brain homogenates and tissue sections from HD mouse models showed that CHDI-180 and CHDI-626 specifically bind mHTT aggregates that accumulate with age and disease progression. Finally, we characterized CHDI-180 and CHDI-626 regarding their off-target selectivity and binding affinity to beta amyloid plaques in brain sections and homogenates from Alzheimer's disease patients.
Identifiants
pubmed: 34504195
doi: 10.1038/s41598-021-97334-z
pii: 10.1038/s41598-021-97334-z
pmc: PMC8429736
doi:
Substances chimiques
HTT protein, human
0
Htt protein, mouse
0
Huntingtin Protein
0
Nitrogen Radioisotopes
0
Protein Aggregates
0
Radioactive Tracers
0
Radiopharmaceuticals
0
Recombinant Proteins
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
17977Informations de copyright
© 2021. The Author(s).
Références
Prion. 2008 Jul-Sep;2(3):112-7
pubmed: 19158505
Mol Cell. 2002 Aug;10(2):259-69
pubmed: 12191472
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6739-44
pubmed: 10829068
Cell. 1997 Aug 8;90(3):549-58
pubmed: 9267034
Prion. 2013 May-Jun;7(3):221-8
pubmed: 23370273
J Biomed Sci. 2020 Jan 6;27(1):18
pubmed: 31906949
Cold Spring Harb Perspect Biol. 2017 Jul 5;9(7):
pubmed: 28062563
Acta Neuropathol. 2019 Jun;137(6):981-1001
pubmed: 30788585
J Neurosci. 2001 Dec 15;21(24):RC189
pubmed: 11734604
Int J Mol Sci. 2017 Jul 19;18(7):
pubmed: 28753941
Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16400-6
pubmed: 12200548
Degener Neurol Neuromuscul Dis. 2019 Mar 08;9:3-17
pubmed: 30881191
PLoS One. 2012;7(12):e49838
pubmed: 23284626
J Biol Chem. 2016 Jun 3;291(23):12074-86
pubmed: 27002149
Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10809-E10818
pubmed: 29162692
J Neurol Neurosurg Psychiatry. 2021 Mar;92(3):263-270
pubmed: 33568448
Methods Mol Biol. 2018;1709:59-74
pubmed: 29177651
J Med Chem. 2021 Aug 26;64(16):12003-12021
pubmed: 34351166
J Neurochem. 2008 Feb;104(3):846-58
pubmed: 17986219
PLoS One. 2016 May 19;11(5):e0155834
pubmed: 27196694
Lancet. 2003 May 10;361(9369):1642-4
pubmed: 12747895
J Clin Transl Res. 2016 Mar 22;2(1):11-26
pubmed: 30873457
Eur J Neurol. 2018 Jan;25(1):24-34
pubmed: 28817209
Handb Clin Neurol. 2012;103:399-421
pubmed: 21827903
PLoS One. 2019 Mar 26;14(3):e0213521
pubmed: 30913220
Eur J Nucl Med Mol Imaging. 2014 Jul;41(7):1398-407
pubmed: 24647577
Hum Mol Genet. 2005 Mar 15;14(6):765-74
pubmed: 15689354
J Biol Chem. 2018 Feb 16;293(7):2597-2605
pubmed: 29282287
Nat Rev Dis Primers. 2019 Apr 11;5(1):24
pubmed: 30975995
Exp Neurol. 2012 Nov;238(1):1-11
pubmed: 22200539
Neurobiol Dis. 2018 Dec;120:126-138
pubmed: 30171891
Biochemistry. 2017 Jul 18;56(28):3579-3586
pubmed: 28621522
J Am Chem Soc. 2017 Jul 5;139(26):8820-8827
pubmed: 28609090
Nature. 2013 Sep 5;501(7465):45-51
pubmed: 24005412
J Med Chem. 2020 Aug 13;63(15):8608-8633
pubmed: 32662649
Cell. 1996 Nov 1;87(3):493-506
pubmed: 8898202
Ann Neurol. 2010 Sep;68(3):319-29
pubmed: 20687209
Cell. 2017 Sep 21;171(1):32-33
pubmed: 28938121
Cold Spring Harb Perspect Med. 2017 Jul 5;7(7):
pubmed: 27940602
Mol Neurodegener. 2007 Sep 26;2:18
pubmed: 17897471
J Mol Biol. 2007 Nov 30;374(3):688-704
pubmed: 17945257
Hum Mol Genet. 2017 Oct 1;26(19):3763-3775
pubmed: 28934390
J Neurosci. 1999 Apr 1;19(7):2522-34
pubmed: 10087066
Mol Neurobiol. 2012 Oct;46(2):393-429
pubmed: 22956270
NeuroRx. 2005 Jul;2(3):447-64
pubmed: 16389308
N Engl J Med. 2019 Jun 13;380(24):2307-2316
pubmed: 31059641
Methods Enzymol. 1999;309:375-86
pubmed: 10507036
Nat Commun. 2013;4:2753
pubmed: 24217578
J Cell Biochem. 2019 Jun;120(6):10519-10529
pubmed: 30672003
Neuron. 2016 Mar 2;89(5):910-26
pubmed: 26938440
J Phys Chem B. 2018 Oct 18;122(41):9507-9515
pubmed: 30252478
Biochim Biophys Acta. 2000 Jul 26;1502(1):16-30
pubmed: 10899428
CNS Neurosci Ther. 2018 Apr;24(4):311-318
pubmed: 29377621
Int J Biochem Cell Biol. 2017 Jan;82:1-9
pubmed: 27840155
Mov Disord Clin Pract. 2019 Jul 03;6(6):434-435
pubmed: 31392242
Lancet Neurol. 2011 Jan;10(1):83-98
pubmed: 21163446
Adv Exp Med Biol. 2018;1049:59-83
pubmed: 29427098
J Am Chem Soc. 2012 Aug 29;134(34):13982-9
pubmed: 22862303
Nat Rev Neurol. 2014 Nov;10(11):620-33
pubmed: 25287597
Cells. 2020 Dec 02;9(12):
pubmed: 33276490
Prog Neurobiol. 2012 Dec;99(3):179-85
pubmed: 22531670
Eur J Neurosci. 2008 Jun;27(11):2803-20
pubmed: 18588526
Structure. 2019 Oct 1;27(10):1570-1580.e4
pubmed: 31466833
Cell. 2017 Nov 2;171(4):918-933.e20
pubmed: 29033132
Annu Rev Neurosci. 2015 Jul 8;38:87-103
pubmed: 25840008
ACS Chem Neurosci. 2018 Jun 20;9(6):1399-1408
pubmed: 29506378
J Cell Biol. 2017 Dec 4;216(12):3917-3929
pubmed: 29167179
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1546-51
pubmed: 26831073
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7462-6
pubmed: 18483195
Drug Discov Today. 2014 Jul;19(7):990-6
pubmed: 24603212
J Neurosci. 2005 Nov 16;25(46):10598-606
pubmed: 16291932
Nat Med. 2004 Jul;10 Suppl:S10-7
pubmed: 15272267
PLoS Biol. 2020 Jul 14;18(7):e3000411
pubmed: 32663221
Handb Exp Pharmacol. 2018;245:85-110
pubmed: 28965171
Cell Transplant. 2014;23(4-5):441-58
pubmed: 24816443
J Huntingtons Dis. 2018;7(4):321-335
pubmed: 30452420
Biochim Biophys Acta. 2005 Jan 3;1739(2-3):158-66
pubmed: 15615635
Nat Rev Dis Primers. 2015 Apr 23;1:15005
pubmed: 27188817
Nat Rev Drug Discov. 2019 Mar;18(3):161-163
pubmed: 30824887
Arq Neuropsiquiatr. 2018 Aug;76(8):555-562
pubmed: 30231129
Trends Biochem Sci. 2004 Oct;29(10):542-7
pubmed: 15450609
Trends Neurosci. 2017 Jul;40(7):422-437
pubmed: 28578789
PLoS One. 2014 May 09;9(5):e96854
pubmed: 24816435
Ann Neurol. 2004 Mar;55(3):306-19
pubmed: 14991808